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RESUMO

O tratamento de águas residuais está enfrentando desafios sem precedentes devido a requisitos
de efluentes mais rígidos, minimização de custos, reutilização sustentável de água, nutrientes

e outros recursos, bem como expectativas crescentes do público em atingir altos padrões de
serviço. Devido à sua ampla difusão, os processos de lodo ativado desempenham um papel
fundamental no tratamento biológico de águas residuais e sua operação ótima tem um grande
impacto tecnológico e social. A disciplina de teoria do controle oferece a estrutura matemática
para direcionar os sistemas de tratamento de águas residuais a um estado desejado. Controle
de modelo preditivo (MPC) e estimação de horizonte móvel (MHE) têm sido as tecnologias
escolhidas para muitas aplicações industriais, incluindo estações de tratamento.

Neste trabalho, as propriedades dinâmicas e a operação ótima de plantas de lodo ativado são
investigadas. Para a primeira tarefa, o sistema dinâmico que consiste em 145 variáveis de estado,
13 controles, 14 distúrbios e 15 saídas, é mapeado em redes complexas nas quais as propriedades
de controlabilidade e observabilidade de estado são estudadas, tanto do ponto estrutural quanto
do ponto de vista clássico. Para a segunda tarefa, estratégias de controle ótimo e estimativa
ótima são projetadas para operar uma planta de lodo ativado tanto para operações de tratamento
de águas residuais quanto para reúso. No reúso de águas residuais, um controlador preditivo
de zero-offset é projetado para operar a planta quando ela for requisitada a produzir água de
qualidade sob medida para ser usada na fertirrigação de safra agrícola. Os problemas ótimos de
controle e estimativa são resolvidos através do método de transcrição direta, que consiste em
converter os problemas em programas não-lineares e, em seguida, resolvê-los numericamente.

De acordo com nossos resultados, as plantas de lodo ativado são controláveis apenas no sentido
estrutural, sendo incontroláveis no sentido convencional e inobserváveis tanto no sentido estrutural
quanto convencional. Sendo estáveis sob a operação convencional, esses processos ainda são
estabilizáveis e detectáveis, apesar de seu controle e observação serem qualificados como tarefas
de alta exigência. Apresentamos e discutimos os resultados da simulação de um controlador
preditivo capaz de melhorar o desempenho da planta de tratamento sob diferentes regimes de
afluentes. Em seguida, mostramos e discutimos os resultados para um controlador de zero-offset
que é capaz de seguir uma trajetória de referência sob condições de afluentes constante, embora
seja apenas parcialmente capaz de seguir esses pontos de referência sob afluentes dinâmicos.
Finalmente, resultados são apresentados para os controladores de modelo preditivos de saída
baseados em medições parciais, ruidosas, do estado interno da planta.

Palavras-chave: Processo de lodo ativado, propriedades dinâmicas, redes complexas, controle
de modelo preditivo, controle ótimo, estimação de horizonte móvel, estimação ótima, reúso de
água.





ABSTRACT

W astewater treatment is facing unprecedented challenges due to stricter effluent require-
ments, costs minimisation, sustainable reuse of water, nutrients, and other resources, as

well as increasing expectations in the public to attain high service standards. Due to their wide
diffusion, activated sludge processes play a key role in the biological treatment of wastewater
and their efficient operation has a large technological and societal impact. The discipline of
control theory offers the mathematical framework for steering wastewater treatment systems
toward a desired state. Model predictive control (MPC) and moving horizon estimation (MHE)
have been the chosen technologies for many industrial applications, including treatment plants.

In this work, the dynamical properties and optimal operation of activated sludge plants are
investigated. For the first task, the dynamical system consisting of 145 state variables, 13
controls, 14 disturbances, and 15 outputs, is mapped onto complex networks in which full-state
controllability and observability properties are studied, from both a structural and a classical
point of view. For the second task, optimal control and estimation strategies are designed for
operating an activated sludge plant for both wastewater treatment and reuse operations. In
wastewater reuse, a zero-offset predictive controller is designed to operate the plant when it is
required to produce water of tailored quality to be used for agricultural crop fertigation. The
optimal control and estimation problems are solved through the direct transcription method
consisting of converting the problems into nonlinear programs, then solving them numerically.

According to our results, activated sludge plants are only controllable in a structural sense, being
uncontrollable in the conventional sense and unobservable both in the structural and conventional
sense. Being stable under the conventional operation, these processes are still stabilizable and
detectable, despite their control and observation being qualified as high-demanding tasks. We
present and discuss the simulation results for a predictive controller that is capable to improve
the performance of the plant for wastewater treatment under different influent regimes. Then,
we show and discuss the results for a zero-offset controller that is capable to track a reference
trajectory under constant influent conditions, albeit being only partially capable to track these
set-points under dynamic influent. Finally, results are presented for the output model predictive
controllers based on partial, noisy, measurements of the plant’s internal state.

Keywords: Activated sludge process, dynamical properties, complex networks, model predictive
control, optimal control, moving horizon estimation, optimal estimation, water reuse.
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3
1 Introduction
Wastewater treatment is facing unprecedented challenges due to stricter effluent requirements,
costs minimisation, as well as the need for sustainable management addressing the implications
of climate change, rising populations, and the increasing public expectations for high service
standards. Besides conventional treatment, wastewater reuse is one of the practices which has
proven itself inherently circular and useful in satisfying the supply of water of varying quality
for industrial, urban and agricultural activities. Because of their wide diffusion, activated sludge
processes play a key role in the biological treatment of wastewater and their efficient operation
and control has a large technological and societal impact.

Many control strategies for activated sludge plants have been proposed in the industrial and
academic literature. More than forty years ago the first specialised conference on Instrumentation,
Control and Automation of Water and Wastewater systems was founded with the firm goal of
encouraging the application of automation techniques to wastewater treatment plants. Pioneering
works, as Olsson, Eklund, et al. (1973) and Olsson and Andrews (1978), inspired numerous
researchers and practitioners to approach this specific field. Extensive reviews of the various
control systems can be found in Olsson, Nielsen, et al. (2005), Olsson, Carlsson, et al. (2014)
and, specifically for aeration systems, in Åmand et al. (2013). While many control strategies for
operating wastewater treatment plants have been proposed, their use for water reclamation is an
active research area with important challenges for the health of the public and the environment
(ait mouheb et al., 2018; thwaites et al., 2018; ricart; rico, 2019). Important research
efforts have been possible thank to a number of support tools providing simulation protocols for
real-world activated sludge processes. The Benchmark Simulation Model no. 1 (BSM1, Gernaey
et al. (2014)), specifically, offers a simulation protocol and a general platform for analysing
common activated sludge processes subjected to typical municipal wastewater influent.

Control theory offers the mathematical framework for steering the wastewater treatment systems
toward a desired state. Model predictive control (MPC) has been the chosen technology for many
industrial applications (forbes et al., 2015). A number of wastewater treatment applications
were presented and different MPC configurations and algorithms were tested using as platform the
BSM1 in its original configuration or with ad-hoc modifications. Rosen et al. (2002) investigated
different model-based alternatives on a reduced BSM1 system for high ammonia peaks control.
On the same attempt, Alex et al. (2002) developed a MPC using a parsimonious deterministic
model for the prediction of the effluent ammonia concentration. A linear quadratic dynamic
matrix control is applied to maintain the effluent quality within regulation-specified limits by
Corriou and Pons (2004). Stare et al. (2007), Holenda et al. (2008), Shen et al. (2008) and Ostace
et al. (2011) compared and tested different MPC configurations. The BSM1 has been used for
testing a nonlinear multi-objective model-predictive control scheme (han et al., 2014). Sotomayor
and Garcia (2002) and Ekman (2008) investigated different predictive control approaches on
distinct activated sludge process. Francisco et al. (2015) selected the controlled variables for a
non-linear MPC structure through a self-optimising procedure. Zeng and Liu (2015), Zhang and
Liu (2019) and Moliner-Heredia et al. (2019) tackled the problem by using economic MPC.

The availability of BSMs has stimulated the design of several modelling and control solutions,
yet too little has been done to study this model and its measurements from a system analytical
perspective. To the best of our knowledge, still too few works discuss, for example, state
estimation and observability of BSMs. Arnold and Dietze (2001) explores the use of moving
horizon estimation (MHE) based on real data from a BSM-like treatment plant. Busch et al.
(2013) considers the BSM with an ideal splitter and investigates both extended Kalman filters
(EKF) and MHE based on an optimal set of measurement variables. Similarly, Zeng, Liu, et al.
(2016) proposes a distributed EKF strategy for the plant considering an ideal splitter, and also
provides a brief discussion about each subsystem observability properties. Further studies on
centralized and distributed estimation are done by Yin and Liu (2018), Yin, Decardi-Nelson, et al.
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(2018) and Yin and Liu (2019), considering an unrealistic large set of measurement variables.

In this work, we analyse the dynamical properties of activated sludge plants and study their
optimal operation for both wastewater treatment and water reuse applications. For the latter, we
investigate the feasibility of operating the treatment plant to produce reusable water of tailored
quality for crop irrigation. In both cases, we focus on the predictive control and estimation of
activated sludge plants as described by the Benchmark Simulation Model no. 1 (BSM1). We
consider the default proposed model, without simplifications or changes to the original layout.

To study the dynamical properties of the plants, we mapped the dynamical system consisting
of 145 state variables, 13 controls, 14 disturbances and 15 outputs onto complex networks in
which we studied full-state controllability and observability properties of the model from a
structural and a classical point of view. As we are primarily interested in determining whether
the plant is controllable and observable under all feasible linearisations, we studied the structural
controllability and observability of the model (lin, 1974; reinschke, 1988; liu et al., 2011,
2013). Assuming a linearisation commonly used in the literature, the classical controllability and
observability properties of the plant are verified using Popov-Belevitch-Hautus tests (hautus,
1970). Finally, we complement the analysis by evaluating energy-based metrics that quantify
the control and observation efforts needed to operate this class of wastewater treatment plants
(müller; weber, 1972; pasqualetti et al., 2014; summers et al., 2016).

Once the properties of the dynamical models are understood, we approach the control and
estimation problems using, respectively, model predictive control (MPC, Borrelli et al. (2017)
and Rawlings, Mayne, et al. (2020)) and moving horizon estimation (MHE, Rao et al. (2003)
and Rawlings and Bakshi (2006)). We consider a zero-offset control strategy based on successive
linear approximations of the process dynamics along the reference trajectories (keviczky; balas,
2006; falcone et al., 2007; gros et al., 2020). By coupling MHE with MPC, we also consider
the output model predictive control (Output MPC) in which knowledge about the process state
is not assumed. All discussed optimal control and estimation problems are tackled by the direct
method consisting on their transcriptions to standard nonlinear programs (NLP, Boyd and
Vandenberghe (2004)) to be solved using efficient numerical methods (betts, 2010). For the
activated sludge plant, a simple regulation control objective is proposed for the conventional
wastewater treatment task, whereas zero-offset reference tracking is considered for the water
reuse application. The latter is formulated as the task of operating the treatment plant to
produce effluent nitrogen according to an optimal fertigation plan for crop growth. The plant
is simulated under typical influent conditions and the controller performances are evaluated in
terms of pre-defined effluent quality metrics, tracking accuracy and operational costs.

1.1 Related publications
During the development of this work, the following scientific contributions have been published:

• neto, o. b. l.; mulas, m.; corona, f. On the controllability of activated sludge plants.
In: 2020 european control conference (ecc). Proceedings of the 2020 European
Control Conference. IEEE, 2020. p. 581–586. doi: 10.23919/ECC51009.2020.9143863

• neto, o. b. l.; mulas, m.; corona, f. On the observability of activated sludge plants.
IFAC-PapersOnLine, v. 53, n. 2, p. 16802–16807, 2020. 21th IFAC World Congress. doi:
10.1016/j.ifacol.2020.12.1151

• neto, o. b. l.; haddon, a.; aichouche, f.; harmand, j.; mulas, m.; corona, f.
Predictive control of activated sludge plants to supply nitrogen for optimal crop growth. In:
11th ifac symposium on advanced control of chemical processes. Proceedings
of the 11th IFAC Symposium on Advanced Control of Chemical Processes. IFAC, 2021. (to
appear)

https://doi.org/10.23919/ECC51009.2020.9143863
https://doi.org/10.1016/j.ifacol.2020.12.1151
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1.2 Thesis organization
This document is organized into four parts, each comprised of a number of sections.

I. The remainder of Part I, Chapter 2, presents the activated sludge plant used as a represen-
tation of biological wastewater treatment plants, then overviews its control objectives.

II. Part II presents the theoretical background of this work. Chapter 3 reviews the notions
of stability, controllability and observability of dynamical systems and presents weaker
properties based on canonical decompositions. Chapter 4 overviews the model predictive
control strategy and its realisation for zero-offset control problems. Chapter 5 introduces
the moving horizon estimation strategy for reconstructing the internal state of a system
based on a set of noisy measurements. Finally, Chapter 6 proposes an output predictive
control strategy by combining model predictive control and moving horizon estimation.

III. Part III presents the experimental results of this work. Chapter 7 discusses our results on
the full-state stability, controllability and observability of activated sludge plants. Chapter
8 presents the simulation results obtained by the predictive control of the activated sludge
plant for conventional treatment. Finally, Chapter 9 presents the simulation results for
the zero-offset predictive controllers operating the treatment plant when the process is
requested to produce effluent nitrogen according to a trajectory reference.

IV. Part IV presents the concluding remarks (Chapter 10) and bibliography used for this work.

Furthermore, Appendix A presents the explicit differential equations and constant parameters
defining the dynamical models discussed in this work. A selection of omitted definitions and
proofs are provided in Appendix B, for the sake of completeness.
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2 Activated sludge plants
We consider the activated sludge process in a conventional biological wastewater treatment plant.
Based on the simultaneous denitrification-nitrification process, bacteria reduce nitrogen present
in the influent wastewater in the form of ammonia into nitrate, which is subsequently reduced
into nitrogen gas to be released into the atmosphere (grady jr et al., 2011). The prototypical
process, in Figure 2.1, consists of five biological reactors and a secondary clarifier.

Figure 2.1: Biological wastewater treatment: process layout, highlighting the activated sludge plant.
The first two bio-reactors comprise the anoxic section, while the last three comprise the aerobic section.

The treatment begins with a first reactor where influent wastewater from primary sedimentation,
return sludge from secondary sedimentation and internal recycle sludge are fed. The outflow from
the first reactor is then sequentially fed to the downstream reactors and, eventually, from the fifth
reactor to the secondary settler. Mixed liquor from the fifth reactor is recirculated into the first
reactor together with the recycle sludge from secondary sedimentation, as mentioned. Excess
sludge from the settler can also be removed towards another process in the facility. Oxygen is
potentially added by insufflating air into each reactor. In the aerated reactors, the ammonium
nitrogen (NH4-N) contained in the wastewater is oxidised into nitrate nitrogen (NO3-N),

NH+
4 + 2O2

Autotrophic bacteria−−−−−−−−−−−−−→ NO−3 + 2H+ −H2O,

which is in turn reduced into nitrogen gas (N2) by denitrifying bacteria in the anoxic reactors.
An additional carbon source can be added to each reactor independently. No other chemicals
are assumed to be added to the process.

Each reactor is described by the Activated Sludge Model no. 1 (henze et al., 2000), while
the settler is described using the 10-layer non-reactive model proposed by Takács et al. (1991).
Under this configuration, the bio-process corresponds to the Benchmark Simulation Model no. 1
(gernaey et al., 2014) and hereafter will be referred to as the activated sludge plant (ASP).

In this section, we present the state-space model proposed by the Benchmark Simulation Model
no. 1 (BSM1) to represent the dynamics in the activated sludge plant. Moreover, we present a
collection of influent wastewater time-series suggested by the benchmark as inputs to simulate
the plant, together with the data generation process that was assumed. Finally, we discuss the
control objectives and performance evaluation criteria for two applications of activated sludge
plants: conventional wastewater treatment and water reuse for crop irrigation.
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2.1 Benchmark state-space model description
A layout of the activated sludge plant detailing the process variables is shown in Figure 2.2.

Figure 2.2: Activated sludge plant: process variables and their relative locations in the plant layout.

From the system perspective, the dynamics of each reactor A(r) (r = 1, . . . , 5) in the plant are
described by 13 state variables, the vector of concentrations

xA(r) =
[
S
A(r)
I S

A(r)
S X

A(r)
I X

A(r)
S X

A(r)
BH X

A(r)
BA X

A(r)
P S

A(r)
O S

A(r)
NO S

A(r)
NH S

A(r)
ND X

A(r)
ND S

A(r)
ALK

]T
,

(2.1)

and controllable inputs uA(r) =
[
KLa

(r) Q
(r)
EC

]
, the oxygen transfer coefficient KLa

(r) and the
external carbon source flow-rate Q(r)

EC . The dynamics of each settler layer S(l) (l = 1, . . . , 10) are
described by 8 state variables, the vector of concentrations

xS(l) =
[
X
S(l)
SS S

S(l)
I S

S(l)
S S

S(l)
O S

S(l)
NO S

S(l)
NH S

S(l)
ND S

S(l)
ALK

]T
. (2.2)

Moreover, the plant is subjected to three additional controllable inputs, the internal and external
sludge recycle flow-rates (QA and QR, respectively) and the wastage flow-rate QW , and to 14
uncontrollable inputs or disturbances, the influent flow-rate QIN and its concentrations xA(IN),
all directly entering the first reactor. Wastewater concentrations in the internal recycle are given
by xA(5), whereas xS(1) are the concentrations in the external recycle and wastage stream.

As for the measurements, we consider a typical sensor-arrangement in which we assume the
existence of a set of analysers determining, in real-time, the vector of concentrations

y =
[
yA(1) . . . yA(5) X

S(10)
SS S

S(10)
NH BOD

S(10)
5 CODS(10) N

S(10)
TOT

]T
, (2.3)

with yA(r) =
[
S
A(r)
O S

A(r)
NO

]
. The effluent concentrations of biochemical oxygen demand (BOD5),

chemical oxygen demand (COD) and total nitrogen (NTOT ) are defined as

BOD
S(10)
5 = 0.25((1− fP )(XS(10)

BH +X
S(10)
BA ) + S

S(10)
S +X

S(10)
S );

CODS(10) = S
S(10)
S + S

S(10)
I +X

S(10)
S +X

S(10)
I +X

S(10)
BH +X

S(10)
BA +X

S(10)
P ;

N
S(10)
TOT = S

S(10)
NO + S

S(10)
NH + S

S(10)
ND +X

S(10)
ND + iXB(XS(10)

BH +X
S(10)
BA ) + iXP (XS(10)

P +X
S(10)
I ),

with stoichiometric parameters (fP , iXB, and iXP ) given by Gernaey et al. (2014). Effluent
concentrations XS(10)

a = (XS(10)
SS /Xf )XA(5)

a , for Xa ∈ {XI , XS , XBH , XBA, XP , XND}, depend
on the feed concentration Xf = 0.75(XA(5)

I +X
A(5)
S +X

A(5)
BH +X

A(5)
BA +X

A(5)
P ).
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The state-space model for this class of ASPs is

ẋ(t) = f (x(t), u(t), w(t)|θx) ; (2.4a)
y(t) = g (x(t)|θy) , (2.4b)

where, at time t ∈ R≥0, x(t) = [xA(1) . . . xA(5) xS(1) . . . xS(10)]T ∈ RNx≥0 is the vector of state-
variables in Equations (2.1, 2.2), y(t) ∈ RNy≥0 is the vector of outputs or measurement variables in
Equation (2.3), u(t) = [QA QR QW uA(1) . . . uA(5)]T ∈ RNu≥0 is the vector of controllable inputs,
and w(t) = [QIN xA(IN)]T ∈ RNw≥0 is the vector of uncontrollable inputs or disturbances.

The time-invariant dynamics f(·|θx) and g(·|θy) depend on a set of stoichiometric and kinetic
parameters collectively denoted by the vectors θx and θy. The state-space model in Equation
(2.4) thus consists of Nx = 13× 5 + 8× 10 = 145 state variables, Nu = 3 + 5 + 5 = 13 controllable
inputs, Nw = 1 + 13 = 14 disturbances and Ny = 15 outputs. Being Nx � Nu and Nx � Ny,
the system is both strongly underactuated and strongly underobserved. The explicit notation is
provided in Table 2.1, while the model equations and parameters are detailed in Appendix A.1.

Importantly, our state-space configuration includes all the control handles suggested in the
benchmark that do not require changes to the plant layout depicted in Figure 2.2. Moreover, we
consider the possibility of having the default low-level controllers (gernaey et al., 2014) applied
on each of the five reactors. As such, our configuration necessarily includes a sensor-arrangement
that considers the measurement of SA(r)

NO and SA(r)
O in all reactors (r = 1, · · · , 5).

Table 2.1: Activated sludge plant: Process variables by location (‘A(r)’, in the r-th biological reactor
with r = 1, . . . , 5, or ‘IN ’ in the influent wastewater; ‘S(l)’ in the l-th layer of the settler with l = 1, . . . , 10)
and type (‘D’, disturbance; ‘S’, state variable; ‘M ’ measurement; and ‘C’, control).

Variable Description Type Units

SIN
I , SA(r)

I , SS(l)
I Soluble inert organic matter D, S, S g COD m−3

SIN
S , SA(r)

S , SS(l)
S Readily biodegradable substrate D, S, S g COD m−3

XIN
I , XA(r)

I Particulate inert organic matter D, S g COD m−3

XIN
S , XA(r)

S Slowly biodegradable substrate D, S g COD m−3

XIN
BH , XA(r)

BH Active heterotrophic biomass D, S g COD m−3

XIN
BA, X

A(r)
BA Active autotrophic biomass D, S g COD m−3

XIN
P , XA(r)

P Particulate products from biomass decay D, S g COD m−3

SIN
O , SA(r)

O , SS(l)
O Dissolved oxygen D, S/M, S g O2 m−3

SIN
NO, SA(r)

NO , SS(l)
NO Nitrate and nitrite nitrogen D, S/M, S g N m−3

SIN
NH , SA(r)

NH , SS(l)
NH NH+

4 + NH3 nitrogen D, S, S/M(l = 10) g N m−3

SIN
ND, SA(r)

ND , SS(l)
ND Soluble biodegradable organic nitrogen D, S, S g N m−3

XIN
ND, XA(r)

ND Particulate biodegradable organic nitrogen D, S g N m−3

SIN
ALK , SA(r)

ALK , SS(l)
ALK Alkalinity D, S mol HCO−

3 m−3

X
S(l)
SS Total suspended solids S/M(l = 10) g COD m−3

QIN Influent flow-rate D m3 d−1

QA Internal recirculation flow-rate C m3 d−1

QR External recirculation flow-rate C m3 d−1

QW Wastage flow-rate C m3 d−1

Q
(r)
EC External carbon source flow-rate C m3 d−1

KLa
(r) Oxygen transfer coefficient C d−1

BOD
S(10)
5 Biochemical oxygen demand M g COD m−3

CODS(10) Chemical oxygen demand M g COD m−3

N
S(10)
T OT Total nitrogen M g N m−3
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2.2 Influent wastewater data description
The influent wastewater constitutes one of the most important streams in the process. From a
control perspective, these inputs correspond to exogenous disturbances that a controller should
reject in order to attain its objective. In the following, the influent modelling approach and
resulting time-series suggested by the benchmark are presented.

The disturbance scenarios are based on a model of urban activity such that households, industry
and rain activity are assumed to be the main sources of wastewater. Specifically, diurnal and
weekly patterns of waste production are designed to account for the households and industry
contributions. Rainfall contributes only to the influent flow-rate, following seasonal and episodic
patterns. The flow-rate and pollutants from these sources are processed by a simple sewer system
from which the primary influent flow-rate, QIN and its concentrations, xA(IN), are composed.

The provided data collection is comprised by three 14-days scenarios (dry weather, storm event,
and rain event) and a long-term weather scenario. The time-series correspond to simulations of
the aforementioned influent model sampled every 15 minutes. In detail:

• Dry weather scenario: Depicts expected diurnal variations under normal weather conditions.

• Storm event scenario: Based on the dry weather scenario, with the addition of two high-
intensity storm events occurring in the second week. Consequently, the scenario depicts a
significant increase in suspended solids after such events, especially for the first storm.

• Rain event scenario: Based on the dry weather scenario, with the addition of a long-
duration rain event in the second week. Being of low intensity, the rain only increases the
flow-rate over that period without significantly affecting the suspended solids afterwards.

• Long-term weather scenario: Depicts expected diurnal variations over a total period of
18 months. Due to its long duration, this time-series includes seasonal patterns into the
influent model (weekends, holidays, rainy and dry seasons, etc.).

Table 2.2 provides the average flow-rate and the flow-weighted average concentrations,

Average concentration = 1
T

T∑
t=0

Flow-rate(t) · Concentration(t)
Average flow-rate , (2.5)

for each disturbance scenario. As the influent model assumes constant XIN
BA(t) = XIN

P (t) =
SINO (t) = SINNO(t) = 0 and SINALK(t) = 7, for all t ∈ R≥0, these variables are omitted.

Table 2.2: Influent time-series: Flow-weighted average influent conditions for each disturbance scenario.

Variable Dry weather Storm event Rain event Long-term Units

Period 14 14 14 609 days
QIN 18446.33 19744.72 21319.75 20850.54 m3 d−1

SINI 30 28.03 25.96 27.05 g COD m−3

SINS 69.5 64.93 60.13 57.45 g COD m−3

XIN
I 51.2 51.92 44.3 48.15 g COD m−3

XIN
S 202.32 193.32 175.05 189.55 g COD m−3

XIN
BH 28.17 27.25 24.37 26.39 g COD m−3

SINNH 31.56 29.48 27.3 23.55 g N m−3

SINND 6.95 6.49 6.01 5.58 g N m−3

XIN
ND 10.59 10.24 9.16 8.4 g N m−3
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Figure 2.3: Dry weather scenario, t ∈ [0, 7]: Time-series for influent flow-rate (QIN ), and influent
nitrogen and organic concentrations (XIN

SS , SIN
NH , BODIN

5 , CODIN , and N IN
T OT ), over a 1-week period.

A visualization of the first 7 days from the dry weather time-series is provided in Figure 2.3, in
terms of the effluent measurements defined in Equation (2.3). The disturbance over this period
is identical for the remaining short-term scenarios, as they are based on the dry weather influent.
The influent total suspended solids (XIN

SS ), chemical oxygen demand (CODIN ), biochemical
oxygen demand (BODIN

5 ) and total nitrogen (N IN
TOT ), are defined by

XIN
SS = 0.75(XIN

I +XIN
S +XIN

BH +XIN
BA +XIN

P );
BODIN

5 = 0.25((1− fP )(XIN
BH +XIN

BA) + SINS +XIN
S );

CODIN = SINS + SINI +XIN
S +XIN

I +XIN
BH +XIN

BA +XIN
P ;

N IN
TOT = SINNO + SINNH + SINND +XIN

ND + iXB(XIN
BH +XIN

BA) + iXP (XIN
P +XIN

I ).

(2.6)

This visualization highlights the diurnal and weekly patterns used in the influent model design.
Every day, the wastewater flow-rate and its concentrations peak at mid-day, remaining at high
levels until significantly decreasing at midnight. A decrease in the waste being produced can be
perceived during the weekends (after 5 days), when industrial activity is expected to be smaller.

2.3 Process operation and control objectives
Conventionally, an activated sludge plant is operated to produce treated water by means of
efficient carbon and nitrogen removal. Recently, the growing interest in wastewater reuse has
encouraged different modes of operation that aim at obtaining tailored quantities of these
chemicals. In this section, we detail the control objectives and performance evaluation criteria
for both the conventional treatment application and a water reuse application for crop irrigation.

2.3.1 Conventional wastewater treatment

In conventional wastewater treatment, the general objective consists of producing effluent water
satisfying, during the entire operation period, the quality upper limits shown at Table 2.3. These
effluent limits are realistic suggestions for benchmarking, despite not corresponding to the actual
requirements of a specific location. The control performance is evaluated by the number of limit
violations and by the percentage of time that the effluent fails to meet the requirements.

In this work, we tackle the treatment control task by designing a feedback controller to regulate
the process towards a reference steady-state satisfying the effluent requirements, as illustrated in
Figure 2.4. For this purpose, we consider the default steady-state point SS = (xSS , uSS , wSS , ySS)
suggested by the benchmark (gernaey et al., 2014). This point is obtained as the result of a
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Variable Limit Reference Units

X
S(10)
SS 30 12.50 g COD m−3

S
S(10)
NH 4 1.73 g N m−3

BOD
S(10)
5 10 2.65 g COD m−3

CODS(10) 100 47.55 g COD m−3

N
S(10)
TOT 18 14.05 g N m−3

Wastewater Treatment Plant

Controller Reference

OutputControl

Table 2.3 & Figure 2.4: Treatment control: Quality limits and steady-state references for the effluent-
based outputs (left), and diagram of the regulation control task (right).

100-days open-loop simulation of the model equations (Eq. 2.4) with constant default values for
the controllable inputs and constant influent conditions. This is a valid reference steady-state
for the regulation control, as the output variables satisfy the upper quality limits (Table 2.3).
The explicit values for all variables in the steady-state point are given in Appendix A.1.

In addition to quality limits, a popular metric consists on the Effluent Quality Index (EQI),

EQI = 1
1000T

∫ tf

t0
(QIN (t)−QW (t))

(
2XS(10)

SS (t) + CODS(10)(t)

+ 2BODS(10)
5 (t) + 30NS(10)

TKN (t) + 10SS(10)
NO (t)

)
dt (2.7)

over total operation period T = (tf − t0) and given Kjeldahl nitrogen NS(10)
TKN = N

S(10)
TOT − S

S(10)
NO .

We consider this quantity to compare the overall effluent quality of the closed-loop control against
the open-loop operation. This metric (in units of kg pollution unit d−1) is proportional to the
total effluent concentration of the pollutants considered relevant in most regional regulations.

2.3.2 Water reuse for crop irrigation

We consider the operation of activated sludge plants to produce reusable water of tailored quality
for crop irrigation. We focus on soluble nitrogen as the relevant chemical for irrigation, as this
nutrient is known to directly affect the growth rate for several classes of crops (pelak et al.,
2017). The control task thus consists of tracking an effluent of varying nitrogen content.

The reference nitrogen trajectories considered in this work are resulting from a higher-level
control problem that aims at maximizing plant biomass using a simple crop growth system (neto;
haddon, et al., 2021). The reuse control problem is then approached through a zero-offset

Wastewater treatment plant

Controller

Agricultural crops

Controller Objective

Output ControlControl

Model

Output

ControlReference

Figure 2.5: Reuse control: Control hierarchy of the crop-treatment system. A fertigation plan for
optimal crop growth is generated by the crop system, then imported as reference for the treatment plant.
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Figure 2.6: Reuse control: Nitrogen reference trajectories generated by the crop system for one growing
season (140 days). Each scenario differs with respect to the initial soil nitrogen content being assumed.

controller that operates the treatment plant to supply total nitrogen (NTOT ) according to this
optimal planning for crop growth. The coupling between both controllers is depicted in Figure
2.5. We consider three reference trajectories corresponding to different irrigation scenarios,
shown in Figure. 2.6. These scenarios assume a normal growing season of 140 days. A detailed
discussion about the computation of these references is given in Appendix A.2.

The control performance is evaluated by the normalized mean-square error (NMSE),

JNMSE(ỹ, ỹsp) = 1
T

∫ tf

t0

‖ỹ(t)− ỹsp(t)‖2
‖ỹsp(t)‖2 dt, (2.8)

measuring, for interval T = tf − t0, the tracking accuracy of the output variables of interest,
ỹ ∈ RNỹ (Nỹ ≤ Ny), with respect to the desired reference, ỹsp ∈ RNỹ . Additionally, we introduce
energy cost indices for the pumping energy (PE, in kWh d−1), aeration energy (AE, in kWh d−1),
and carbon addition energy (CAE, in kg COD d−1),

PE = 1
T

∫ tf

t0

(
0.004QA(t) + 0.008QR(t) + 0.05QW (t)

)
dt; (2.9a)

AE = SsatO

1.8(1000T )

∫ tf

t0

5∑
r=1

V A(r)KLa
(r)(t)dt; (2.9b)

CAE = 1
1000T

∫ tf

t0

5∑
r=1

SECS Q
(r)
EC(t)dt, (2.9c)

for oxygen saturation concentration SsatO , volumes V A(r), and carbon source concentration SECS
(Appendix A.1). Collectively, these metrics define the operational cost index (OCI, in kWh d−1),

OCI = PE + AE + fEC · CAE, (2.10)

summarising the energy costs of a control strategy. The weighting factor is fEC = 3 kWh kg−1.
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Part II

Theoretical Preliminaries
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3 Dynamical models properties
We discuss general state-space representations of non-autonomous dynamical systems

ẋ(t) = ft (x(t), u(t), w(t)|θx) ; (3.1a)
y(t) = gt (x(t), u(t), w(t)|θy) . (3.1b)

The state equation, Eq. (3.1a), describes how the state vector x(t) ∈ RNx evolves in time,
given its current value and the controllable and uncontrollable but measurable input vectors
u(t) ∈ RNu and w(t) ∈ RNw , respectively. The measurement equation, Eq. (3.1b), describes how
the state is emitted to form the measurement vector y(t) ∈ RNy . The nonlinear, time-varying
and parametric vector functions ft(·|θx) and gt(·|θy) define the dynamics and the measurement
process, respectively. Vectors θx and θy are fixed model’s parameters. We limit ourselves to
autonomous functions f (·) and g (·) and no feedthrough of the inputs, y(t) = g(x(t)|θy). As
time-invariance allows us to assume t0 = 0, often we intentionally omit mentioning it.

The structural form of the state-space representation can be written using the linear model

ẋ(t) = Ax(t) +Bu(t) +Gw(t) (3.2a)
y(t) = Cx(t) (3.2b)

The structure of matrices A, B, G and C can be defined using inference diagrams in such a
way that element An′x,nx (respectively, Bnx,nu , Gnx,nw and Cny ,nx) is non-zero, and potentially
unknown, whenever component xnx (unu , wnw and again xnx) appears in the vector field fn′x(·)
and algebraic function gny(·); that is, whenever the (n′x, nx)-th element ∂fn′x/∂xnx (respectively,
∂fn′x/∂unu , ∂fn′x/∂wnw and ∂gny/∂xnx) in the Jacobian matrix(es) is not identically null. When
the elements of A, B, G and C are either zeros or unknown, the resulting family of systems is
referred to as structured dynamical system (reinschke, 1988).

Under such representations, the dynamical properties of the system being studied can be
characterised and discussed. By coupling controls to state variables and state variables to
measurements, the notions of controllability and observability emerge as prerequisites for
control and state estimation, respectively. These conditions can be relaxed in the absence of
unstable modes, to derive the weaker notions of stabilisability and detectability. For linear
systems, classical sufficient and necessary controllability and observability tests have been derived
(kalman, r., 1960; chen, 1998). When the system is only known structurally, we have to resort
to stronger notions of structural controllability and observability (lin, 1974) and their associated
sufficient and necessary conditions (liu et al., 2011, 2013). For the sake of completeness and for
notational necessity, this chapter overviews these concepts.

3.1 Stability
We review stability in terms of the conditions under which system Eq. (3.2) subjected to a
bounded input produces bounded state- and bounded output-response trajectories. These two
notions are often referred to as external and internal stability, the latter one being more general.
For simplicity and without any loss of generality, we neglect the distinction between controls
and disturbances and momentarily redefine the control matrix to be B := [B|G].

A linear system with impulse response matrix H(·, ·) : R≥0 × R≥0 → RNy×Nx ; (t, τ) 7→ H(t, τ)
is said to be stable if its output y(t) =

∫ t
t0
H(t, τ)u(τ)dτ is bounded when the input u(t) is

bounded. This notion of external stability is defined as the existence of a finite gain κ <∞ such
that for all bounded inputs u the following relation holds

‖y(t)‖∞ ≤ κ‖u(t)‖∞. (3.3)
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External stability Eq. (3.3) can be verified at the system level by showing that, under some mild
conditions on the smoothness of u and H, the upper bound κ for the induced matrix norm of
the input-output map exists and can be used as gain in Eq. (3.3); that is,

supt∈R≥0

{∫ t

t0
‖H(t, τ)‖∞dτ

}
= κ <∞. (3.4)

For a LTI system (3.2), H(t, τ) = H(t− τ) = CeA(t−τ)B. Condition Eq. (3.4) specialises and,
equivalently, it suffices to show that i) the impulse response is absolutely integrable and ii)
the transfer function H(s) = L[H(t)] = C(sI − A)−1B is Hurwitz (all the poles λ of all of its
elements lie on the open left half of the complex plane):

i)
∫ ∞
t0
‖H(t)‖dt <∞; (3.5a)

ii) {λ[H(s)] ∈ C : Re(λ) < 0} . (3.5b)

More generally, a linear system (A,B,C) with state transition matrix Φ(·, ·) : R≥0 × R≥0 →
RNx×Nx ; (t, τ) 7→ Φ(t, τ) is stable if both its state x(t) = Φ(t, t0)x(t0) +

∫ t
t0

Φ(t, τ)Bu(τ)dτ and
output y(t) = CΦ(t, t0)x(t0) + C

∫ t
t0

Φ(t, τ)Bu(τ)dτ responses are bounded for every bounded
input u(t). This notion of joint internal and external stability is defined for representations with
bounded functions B and C (that is, when ‖B‖∞ < ∞ and ‖C‖∞ < ∞) as the existence of
positive constants β and γ such that, for every bounded input u and every initial condition x0,

‖x(t)‖∞ ≤ β‖x0‖+ ((β/γ)‖B‖∞) ‖u(t)‖∞ (3.6a)
‖y(t)‖∞ ≤ (β‖C‖∞) ‖x0‖+ ((β/γ)‖C‖∞‖B‖∞) ‖u(t)‖∞ (3.6b)

Importantly, the definition is valid only for systems whose homogeneous part is exponentially
stable with the same constants β and γ (that is, when ‖Φ(t, τ)‖ ≤ βe−γ(t−τ)). At the system
level, internal and external stability Eq. (3.6) can be verified by showing that the state matrix
A is Hurwitz (all the eigenvalues λ lie on the open left half of the complex plane); Formally,

Lemma 3.1. (callier; desoer, 1991). A system with a LTI representation Eq. (3.2) is said
to be exponentially stable at the system level, or just stable, if and only if

{λ[A] ∈ C : Re(λ) < 0} (3.7)

For the LTI system Eq. (3.2) where Φ(t, τ) is the matrix exponential eA(t−τ), the entries of the
state transition matrix are linear combinations of the system modes. Letting λ[A] = {λnx}Nxnx=1 be
the eigenvalues of matrix A, with {λ1, . . . , λN} ⊆ R and {(λN+1, λ

∗
N+1), . . . , (λN+S , λ

∗
N+S)} ⊆ C

being the eigenvalues with respective algebraic multiplicities µ(λnx), and given coefficients
α

(i,j)
n,k , β

(i,j)
n,k , φ

(i,j)
n,k ∈ R, each (i, j)-th entry in transition matrix Φ(t, τ) = eA(t−τ) is of the form

[
eA(t−τ)

]
i,j

=
N∑
n=1

µ(λn)−1∑
k=0

(
α

(i,j)
n,k (t− τ)k

)
eλn(t−τ)

+
N+S∑
n=N+1

µ(λn)−1∑
k=0

(
β

(i,j)
n,k (t− τ)k cos(Im(λn)(t− τ) + φ

(i,j)
n,k )

)
eRe(λn)(t−τ). (3.8)

The condition Eq. (3.7) implies that limt→∞ [Φ(t, τ)]i,j = 0, for all (i, j). Therefore, it is possible
to verify exponential stability at the system level since that, for any fixed τ ≤ t, the homogeneous
part is strictly decreasing with maxt ‖Φ(t, τ)‖ = ‖Φ(τ, τ)‖ ≤ β and limt→∞ ‖Φ(t, τ)‖ = 0.
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3.2 Controllability and observability
A system is said to be full-state controllable if it is possible to steer its state vector from any
initial value to any final value in finite time, whereas it is said to be full-state observable if it is
possible to uniquely determine its initial state from a sequence of measurements over a finite
time interval. These notions are overviewed and classical necessary and sufficient conditions are
given for LTI systems. For uncertain systems, the stronger sufficient and necessary structural
conditions are reviewed. Due to the duality between both properties, this section focus on the
definitions concerning only controllability, thus avoiding repetitive statements. For the sake of
completeness, the observability counterparts are presented in Appendix B.1.

3.2.1 Classical controllability

Let the controllability Gramian of the pair (A,B) be the Nx ×Nx symmetric matrix

Wc(t) =
∫ t

0
eAτBBTeA

Tτdτ , (3.9)

a sufficient and necessary controllability condition is det(Wc(t)) 6= 0, ∀t > 0. The computation
of Gramian-based criteria in Eq. (3.9) is straightforward but unpractical. Equivalent criteria
can be defined in terms of the system’s controllability matrix (kalman, r., 1960).

Let C = [B AB A2B · · · ANx−1B] be the Nx × (Nx ×Nu) controllability matrix of the system.
A sufficient and necessary condition for controllability is

rank(C) = Nx. (3.10)

The criterion in Eq. (3.10) is more direct and, for low-dimensional systems, its evaluation only
requires a small number of matrix multiplications. However, the computation of matrix C can
still be troublesome when the dimensionality of the state vector is large. This limitation is due
to numerical over- and under-flow that may result from computing large powers of A and AT.

A scalable alternative that overcomes the limitations of both Gramian-based and Kalman’s
rank criteria is provided by the Popov-Belevitch-Hautus (PBH) test. Necessary and sufficient
conditions are given by the following lemma:

Lemma 3.2. (hautus, 1970). The following statements are all equivalent:

I. The pair (A,B) is controllable (3.11a)

II. rank(
[
λI −A B

]
) = Nx, ∀λ ∈ C; (3.11b)

III. rank(
[
λiI −A B

]
) = Nx, ∀λi ∈ σ(A) ⊂ C. (3.11c)

Based on Lemma 3.2, the pair (A,B) is said to be controllable if and only if, for each eigenvalue
λi ∈ σ(A) (that is, when rank(λiI −A) < Nx), the columns of B have at least one component
in the direction νi ∈ RNx , νi being the eigenvector of A associated to λi; The eigenvectors νi for
which rank([λiI −A B]) < Nx indicate state-space directions that are uncontrollable with the
controls determined by B.

Since controllability is invariant with respect to similarity transformations represented by
nonsingular matrices P ∈ RNx×Nx , the following holds:

• Pair (A,B) is controllable if and only if pair (A′, B′) = (P−1AP,P−1B) is controllable;
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Controllability metrics

Full-state controllability is a binary property. Starting from the seminal work by Müller and
Weber (1972), various scalar metrics have been proposed to quantify the difficulty of the control
task. We overview energy-related metrics recently proposed by Pasqualetti et al. (2014) and
Summers et al. (2016) for the controllability of LTI systems.

Define the quadratic control and measurement energies

Ec (u(t), t|R) =
∫ t

0
u(τ)TRu(τ)dτ = ‖u(t)‖2R; (3.12a)

Eo (y(t), t|Q) =
∫ t

0
y(τ)TQy(τ)dτ = ‖y(t)‖2Q. (3.12b)

In optimal quadratic regulation, we search for a controller that minimises the sum of these energies,
for some user-defined positive definite weighting matrices R ∈ RNx×Nx and Q ∈ RNy×Ny . When
minimised individually with identity matrix R = Iu, the unweighted control energy determines

• ũ(t) = BTeA
T(tf−t)W−1

c (tf )
(
x(tf )− eAtfx(0)

)
, the control from x(0) to x(tf ) of minimum

L2-effort E∗c
(
t|ũ(t)

)
=
(
x(tf )− eAtfx(0)

)T
W−1
c (t)

(
x(tf )− eAtfx(0)

)
;

Finite- and infinite-horizon controllability metrics can thus be derived from Eq. (3.9). The
eigenvectors

{
νnx(λcnx)

}Nx
nx=1 associated with the eigenvalues λcnx ∈ σ (Wc(t)) correspond to

state-space directions that require increasingly larger control energy the smaller λcnx . The control
effort associated with pair (A,B) can thus be quantified by single scalars defined from the
spectrum σ (Wc(t)) =

{
λcnx

}Nx
nx=1. Because the infinite-time Gramian, Wc(∞), always exists

for Hurwitz systems, Eq. (3.7), and its computation can be performed efficiently by solving a
Lyapunov equation (benner et al., 2008), we overview only a number of infinite-time metrics.
Their finite-time counterparts are evaluated by integrating Eq. (3.9).

Definition 3.1. (Energy-related controllability metrics, (summers et al., 2016)) Let Wc(∞) be
the solution of AWc(∞) +Wc(∞)AT +BBT = 0. The control effort for the pair (A,B) can be
quantified according to the following scalar metrics:

I. trace
(
Wc(∞)

)
: Inversely related to the control effort averaged over all state-space direc-

tions;

II. trace
(
W †c (∞)

)
: Related to the control effort averaged over all directions in the state-space;

III. log
(
det(Wc(∞))

)
: Related to the volume of a Nx-dimensional hyper-ellipsoid whose points

are reachable with one unit or less of control energy;

IV. λcmin
(
Wc(∞)

)
: Inversely related to the control energy along the least controllable eigen-

direction.

The control effort associated to attempting to control the full-state by only controlling one
individual state variable xnx at a time is quantified by

Cc(nx) = trace (Wc,nx(∞)) . (3.13)

This non-negative quantity, the average controllability centrality (summers et al., 2016), is
computed by assuming a single control that actuates only on the nx-th state variable: That is,
when B = enx , a unit vector in the standard basis of RNx . The infinite-horizon controllability
GramiansWc,nx(∞) ∈ RNx×Nx are computed independently for each nx ∈ {1, . . . , Nx} by solving
the Lyapunov equations AWc,nx(∞) +Wc,nx(∞)AT = −enxeTnx .
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3.2.2 Structural controllability

Structural analysis aims at assessing a family of systems with the same structure. As it encodes
the relationships between state-, control- and output-variables, analysing a structured system
assess the controllability and observability properties of each possible realisation from the family
of systems it represents. The dynamics and measurement process of a structured dynamical
system (A,B,C) can be studied by mapping its state and output equations onto the digraph

G = (V, E), (3.14)

where the vertex set V = VA ∪ VB ∪ VC consists of the union of vertex sets VA =
{
x1, . . . , xNx

}
of state, VB =

{
u1, . . . , uNu

}
of control, and VC =

{
y1, . . . , yNy

}
of output components. The

edge set E = EA ∪ EB ∪ EC is the union of set EA =
{
(xnx , xn′x) | An′x,nx 6= 0

}
of directed edges

between state component vertices, set EB =
{
(unu , xnx) | Bnx,nu 6= 0

}
of directed edges between

state and control component vertices, and set EC =
{
(xnx , yny) | Cny ,nx 6= 0

}
of directed edges

between state and output component vertices.

Specifically, the structural controllability of the family of systems with dynamics represented
by pair (A,B) can be studied through its associated directed subgraph Gc = (Vc, Ec), defined
by the vertex set Vc = VA ∪ VB and the edge set Ec = EA ∪ EB. The pair (A,B) is said to be
structurally controllable if the nonzero elements of A and B can be set in such a way that the
system is controllable in the classical sense. Formally, we have the definition

Definition 3.2. (Structural Controllability, (lin, 1974)). The pair (A,B) is said to be struc-
turally controllable if and only if there exists a controllable pair (Ā, B̄) of same dimension and
structure of pair (A,B) such that ‖Ā−A‖ < ε and ‖B̄ −B‖ < ε, for an arbitrarily small ε > 0.

Two pairs (A,B) and (Ā, B̄) have the same structure if they have the same dimensions and each
element An1,n2 6= 0 (respectively, Bnx,nu 6= 0) whenever Ān1,n2 6= 0 (respectively, B̄nx,nu 6= 0).
The necessary and sufficient conditions for structural controllability are the following:

Lemma 3.3. (lin, 1974). Let Gc = (Vc, Ec) be the directed network associated to the pair (A,B).
The pair (A,B) is said to be structurally controllable if and only if the following conditions hold:

• (Accessibility) For every state-node xnx ∈ VA there exists at least one directed path starting
from any control-node unu ∈ VB to xnx.

• (Dilation-free) For every S ⊆ VA, |T (S)| ≥ |S|, where T (S) = {vj ∈ Vc | xnx ∈ S ∧
(vj , xnx) ∈ Ec} denotes a neighbourhood set for S.

The first condition can be verified by identifying the state vertices that are accessible from
each possible origin vertex (a control): Any graph search algorithm can be used for the task
(cormen et al., 2009). The second condition can be verified by forming a maximum matching
M⊆ Γ of an equivalent bipartite graph K = (V+

A ,V
−
A ,Γ) and then checking that all unmatched

state vertices xj ∈ V−A are directly connected to distinct control vertices in Gc = (Vc, Ec) (liu
et al., 2011). The maximum matching problem consists of identifying a (possibly not unique)
subset of edges without common vertices that has maximum cardinality. The bipartite graph
K = (V+

A ,V
−
A ,Γ) is defined by the disjoint and independent vertex sets V+

A = {x+
1 , . . . , x

+
Nx
} and

V−A = {x−1 , . . . , x−Nx}, and by the undirected edge set Γ = {(x+
n1 , x

−
n2) | (xn1 , xn2) ∈ Ec}. Distinct

control nodes linked to unmatched state vertices form a V−A−perfect matching. A guarantee of
the dilation-free condition thus follows from the Hall’s theorem (hall, 1935).
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3.3 Reduced-order models and stabilisability
A system which is not controllable can be decomposed into controllable and not controllable
parts by a similarity transformation Pc ∈ RNx×Nx . In this section, we overview the Kalman de-
composition theorem for obtaining minimal realisations of LTI systems from such transformation.
For uncontrollable systems, the weaker property of stabilisability is also overviewed.

3.3.1 Kalman decomposition theorem

Let S ∈ RNx̃×Nx and T ∈ RNx×Nx̃ be a pair of transformation matrices satisfying ST = I. The
linear transformation x̃ = Sx resulting in the state-space representation

˙̃x(t) = Ãx̃(t) + B̃u(t)
y(t) = C̃x̃(t),

with Ã ∈ RNx̃×Nx̃ = SAT , B̃ ∈ RNx̃×Nu = SB, and C̃ ∈ RNy×Nx̃ = CT , is considered a
Nx̃-order reduced model of the full-order model (A,B,C) whenever Nx̃ < Nx. The quality of
the reduced-order model (Ã, B̃, C̃) can be assessed in terms of the approximation error

‖G̃−G‖H∞‖u‖L2 (∀u ∈ RNu),

for the input-output maps G̃(s) = C̃(sI − Ã)−1B̃ and G(s) = C(sI −A)−1B.

A perfect reduced-order model can be obtained by means of computing the minimal realisation
of (A,B,C) using the Kalman decomposition theorem:

Lemma 3.4. (Minimal Realisation, (kalman, r. e., 1963)). Let C and O be, respectively,
the controllability and observability matrix of a full-order model (A,B,C), with rank(C) = NC,
rank(O) = NO and rank([C OT]) = NCO. Now, let x̃ = [xco xc̄o xcō xc̄ō]T = P−1x be a linear
transformation converting (A,B,C) into Kalman’s canonical form

ẋco(t)
ẋcō(t)
ẋc̄o(t)
ẋc̄ō(t)

 =


Aco 0 A13 0
A21 Acō A23 A24
0 0 Ac̄o 0
0 0 A43 Ac̄ō



xco(t)
xcō(t)
xc̄o(t)
xc̄ō(t)

+


Bco
Bcō
0
0

u(t)

y(t) =
[
Cco 0 Cc̄o 0

]
x̃(t).

The minimal realisation (Aco, Bco, Cco) is a reduced model of order Nxco = NC +NO −NCO.

The minimal realisation is a reduced model of (A,B,C) which is both controllable and observable.
This model can be efficiently obtained even for high-dimensional state-spaces, as the actual
computation of matrices C and O can be avoided (van dooren, 1981). Moreover, G̃(s) =
Cco(sI−Aco)−1Bco = C(sI−A)−1B = G(s), such that this realisation is a perfect approximation
with error ‖G̃−G‖H∞‖u‖L2 = 0, for all u ∈ RNu . However, the minimal realisation has full-order
Nxco = Nx whenever (A,B,C) is both controllable and observable.

3.3.2 Stabilizability

A system is said stabilizable if it possible to steer its state vector from any initial state to the
zero-state (a steady-state, for linearised systems). This condition is often perceived as a weaker
alternative to full-state controllability. Formally,
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Definition 3.3. (Stabilizability). The pair (A,B) is said to be stabilizable if, given any initial
state x(0), it is possible to design an input u(t) such that x(t)→ 0 as t→∞.

Sufficient and necessary conditions for stabilizability can be derived from the Kalman canonical
decomposition of the system. Let C = [B AB A2B · · · ANx−1B] be the RNx×NxNu controllability
matrix of a system (A,B), with rank(C) = Nxc ≤ Nx. There exists a nonsingular matrix
Pc ∈ RNx×Nx , whose first Nxc columns are the linearly independent columns of C, such that the
transformation x̃ = P−1

c x has a state equation in the form[
˙̃xc(t)
˙̃xc̄(t)

]
=
[
Ac A12
0 Ac̄

] [
x̃c(t)
x̃c̄(t)

]
+
[
Bc
0

]
u(t),

with x̃c(t) ∈ RN1 and x̃c̄(t) ∈ R(Nx−N1). A sufficient and necessary condition for stabilizability
is that Re(λj) < 0 for all λj ∈ σ(Ac̄) ⊂ σ(A) (chen, 1998). Although straightforward, this
criterion is unpractical for high-dimensional systems as the design of Pc requires the computation
of the full controllability matrix C = [B AB A2B · · · ANx−1B].

A scalable alternative is given by the Popov-Belevitch-Hautus (PBH) stabilizability test, based
on the Hautus lemma:

Lemma 3.5. (hautus, 1970). Let σ(A) = {λi}Nxi=1 be the spectrum of A and σ̃(A) = {λi ∈
σ(A) | Re(λi) ≥ 0} be the set of eigenvalues with positive real part. The statement ‘the pair
(A,B) is stabilizable’ is equivalent to the following statements:

I. rank(
[
λI −A B

]
) = Nx, ∀λ ∈ C; (3.15a)

II. rank(
[
λiI −A B

]
) = Nx, ∀λi ∈ σ̃(A) ⊂ C. (3.15b)

Thus, the pair (A,B) is stabilizable if and only if, for each unstable eigenvalue λi of A (that is,
when Re(λi) ≥ 0 and rank(λiI −A) < Nx), the columns of B have at least one component in
the direction νi ∈ RNx , νi being the eigenvector of A associated to λi. Importantly, every system
(A,B) with a Hurwitz matrix A is consequently stabilizable, since σ̃(A) = ∅.
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4 Model predictive control
We discuss the design of optimal controls u(t) = π(x(t)|θu) that transfers a system from initial
state x(t0) to a desired state x(tf ) by means of predictive control. Specifically, we aim at obtaining
the optimal control u?(·) : R≥0 → RNu , and resulting optimal state trajectory x?(·) : R≥0 → RNx ,
that solves finite-horizon optimal control problems (OCP) in the form

min
x(·),u(·)

J(x(·), u(·)) =
∫ tf

t0
L(x(t), u(t))dt+ Lf (x(tf )) (4.1a)

s.t. ẋ(t) = f(x(t), u(t), w(t)|θx), (4.1b)
x(t) ∈ X , u(t) ∈ U , (4.1c)
Φ(x(t0), x(tf )) = 0. (4.1d)

The functions L(·, ·) : RNx × RNu → R≥0 and Lf (·) : RNx → R≥0 define, respectively, the stage
and terminal cost functions. The sets X and U characterise the constraints to the state and
control trajectories, respectively. The vector-valued function Φ(·, ·) : RNx × RNx → RNΦ defines
NΦ equality constraints on the initial state x(t0) and terminal x(tf ), and their combinations.

In this section, we review the discretise-then-optimise approach of solving OCPs, and then we
overview the Model Predictive Control (MPC) strategy as a closed-loop controller. We also
discuss the constrained affine quadratic regulator (c-AQR) class of OCPs arising from a specific
choice of cost and constraints functions. Finally, a zero-offset MPC formulation is proposed to
deal with regulation and reference tracking control tasks using linearisations of nonlinear models.

4.1 Discretise-then-optimise and the direct method
In general, solving optimisation Eq. (4.1) requires solving a two-value boundary-value problem
for the Hamiltonian system defined by state-equation ẋ(t) = (∂H/∂λ) and adjoint-state equation
λ̇(t) = −(∂H/∂x), with H = J(·) + λTf(·) + µTh(·) being the augmented Hamiltonian (kirk,
2004). The vector-valued function h(·) : RNx × RNu → RNµ refers to the inequality constraints
used to represent X and U . Although this approach (known as the indirect approach) leads to
the optimal control function, u?(·), its solutions are often only computationally feasible under
reasonably strict conditions (e.g., small-scale linear unconstrained systems).

In the direction of a more practical approach to solve general OCPs, we focus on the discretise-
then-optimise approach. For each time interval t ∈ [tk, tk+1), we consider piecewise constant
inputs u(t) = u(tk) and w(t) = w(tk), with tk = k∆t the k-th time instant given period ∆t > 0.
The state dynamics can thus be represented in discrete-time by the transition function

xk+1 = f∆t(xk, uk, wk|θx) = xk +
∫ tk+1

tk

f(x(τ), uk, wk|θx)dτ, (4.2)

with xk = x(k∆t), uk = u(k∆t), and wk = w(k∆t). The discrete-time output equation is given
by yk = y(k∆t) = g(xk|θy). Under this discrete-time representation, the control horizon can be
partitioned into N = b(tf − t0)/∆tc intervals as T = {[tn, tn+1]}Nn=0 such that the integral term
in the objective functional J(x, u), Eq. (4.1), can be approximated by the left Rienmann sum

∫ tf

t0
L(x(t), u(t))dt ≈ ∆t

N−1∑
n=0

L(x(tn), u(tn)) = ∆t
N−1∑
n=0

L(xn, un) ∝
N−1∑
n=0

L(xn, un).

Similarly, the terminal cost is directly Lf (x(tf )) = Lf (xN ). Considering such approximations,
the general problem in Eq. (4.1) reduces to a finite-dimensional optimisation over the sequence
of control actions (u0, . . . , uN−1) and states (x0, . . . , xN ). We formally define this class of OCPs:
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Definition 4.1. (Discrete-time optimal control problem). Consider a system with dynamics
represented by xn+1 = f∆t(xn, un, wn|θx). For cost functions L(·, ·) : RNx × RNu → R≥0 and
Lf (·) : RNx → R≥0, constraint sets X and U , and equality conditions Φ(·, ·) : RNx ×RNx → RNΦ ,
a discrete-time optimal control problem is defined as an optimisation problem in the form

min
x0, · · · , xN ,
u0, · · · , uN−1

J∆t(x, u) =
N−1∑
n=0

L(xn, un) + Lf (xN ) (4.3a)

s.t.
∀n∈[0,N−1]

xn+1 = f∆t(xn, un, wn|θx), (4.3b)
xn ∈ X , un ∈ U , (4.3c)
Φ(x0, xN ) = 0. (4.3d)

The optimisation in Definition. 4.1 is solved by transcribing the problem into a standard
nonlinear program (NLP) from which candidate solutions satisfying optimality conditions can
be obtained using numerical methods. This is known as the direct approach to optimal control
(betts, 2010). Specifically, consider the constrained nonlinear program,

min
x, u

J∆t(x, u) (4.4a)

s.t. G(x, u) = 0, H(x, u) ≤ 0, (4.4b)

where x = (x0, . . . , xN ) ∈ R(N)Nx and u = (u0, . . . , uN−1) ∈ R(N−1)Nu are the decision vectors,
function G(x, u) : R(N)Nx × R(N−1)Nu → RN+NΦ is obtained by collecting all dynamical con-
straints in Eq. (4.3b) and conditions Eq. (4.3d), and H(x, u) : R(N)Nx × R(N−1)Nu → RNµ
represents both constraint sets X and U in Eq. (4.3c). A candidate solution for Eq. (4.4) can
be obtained by solving the first-order Karush-Kuhn-Tucker (KKT) optimality conditions,

∇(x,u)L(x, u, λ, µ) = 0 (4.5a)
G(x, u) = 0, H(x, u) ≤ 0, (4.5b)

µ ≥ 0, µjHj(x, u) = 0 (j = 1, . . . , Nµ), (4.5c)

with Lagrangian function L(x, u, λ, µ) = J∆t(x, u) + λTG(x, u) + µTH(x, u) defined given the
Lagrange multipliers λ = [λ0 · · · λN−1+NΦ ]T ∈ RN+Nφ and µ = [µ0 · · · µNµ ]T ∈ RNµ+1. In
general, the KKT conditions are solved using Newton-type methods, including active-set methods
to deal with Eqs. (4.5b, 4.5c), the inequality constraints (betts, 2010).

For unconstrained terminal states, Φ(x0, xN ) = Φ0(x0), and inequalities Hn(x, u) = Hn(xn, un),
n = 1, . . . , N−1, the KKT conditions for the NLP from Definition 4.1 have a specific structure:

Lemma 4.1. (KKT Conditions for the OCP). Considering the NLP in Eq (4.4) constructed by
the OCP in Definition 4.1, the KKT conditions (with indices n = 0, . . . , N−1) are given by

λN = ∇xNLf (xN ), (4.6a)

λn = ∇xnL(xn, un) +
(∂f∆t
∂xn

)T∣∣∣
(xn,un,wn)

λn+1 +
( ∂H
∂xn

)T∣∣∣
(xn,un)

µn, (4.6b)

0 = ∇unL(xn, un) +
(∂f∆t
∂un

)T∣∣∣
(xn,un,wn)

λn+1 +
( ∂H
∂un

)T∣∣∣
(xn,un)

µn, (4.6c)

Φ0(x0) = 0, xn+1 − f∆t(xn, un, wn|θx) = 0, H(x, u) ≤ 0, (4.6d)
µ ≥ 0, µnHn(xn, un) = 0. (4.6e)
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We denote Eqs. (4.6a, 4.6b) and Eq. (4.6c) respectively as the adjoint and control equations.
These conditions show that the Lagrangian L(·) is a partially separable function (griewank;
toint, 1982). Thus, this function admits a decomposition L(x, u, λ, µ) = ∑N

n=0 Ln(xn, un, λ, µ),
with each partial function Ln(xn, un, λ, µ) depending only on the n-th state and input vectors.
This important property leads to the realisation that the OCP in Definition 4.1 characterise sparse
optimisation problems. Specifically, it is possible to verify that the Hessian ∇2L has a block-
diagonal structure. As a consequence, the direct approach can benefit from sparsity-exploiting
algorithms to efficiently solve for optimal controls (u?0, . . . , u?N−1) and states (x?0, . . . , x?N ).

Despite the sparsity pattern, the optimisation problems described are still problematic for large-
scale state-spaces as the total number of decision variables, (N)Nx + (N − 1)Nu, is considerably
large. Alternatively, it is possible to simplify the problem by considering the recursive formula

xn+1 = fn∆t(x0, u0, . . . , un) =
{
f∆t(fn−1

∆t (x0, u0, . . . , un−1), un, wn) n > 0
x0 n = 0

, (4.7)

the forward simulation of f∆t(·) starting at initial state x0. Thus, dependence on intermediate
states (x1, . . . , xN ) can be removed from the objective functional in Eq. (4.3a) by rewriting it as

J∆t(x0, u) =
N−1∑
n=0

L(fn−1
∆t (x0, u0, . . . , un−1), un) + Lf (fN−1

∆t (x0, u0, . . . , uN−1)).

For this reduced optimisation, now defined for only Nx + (N − 1)Nu decision variables, each
Newton’s method iteration consists on first computing (x1, . . . , xN ) by forward simulation
(and computing (λN , . . . , λ0) by backwards simulation) then updating (x0, u0, . . . , uN−1). This
method is thus named the sequential approach, whereas directly solving Lemma 4.1 is denoted
the simultaneous approach. The sequential approach is preferable over the simultaneous approach
specially for strongly underactuated systems, i.e., when Nx � Nu. Additionally, the optimisation
can be further simplified when initial state is fixed by Φ(x0, xN ) = x0 − x̂0, for a given x̂0.

In this work, all optimal control problems are solved using the sequential approach. For notation
simplicity, we keep the dynamical constraints in the OCP definitions (Eq (4.3b)) to denote the
model that is implicitly being used for forward simulation.

4.2 Receding-horizon control
A controller based on the optimal controls (u?0, . . . , u?N−1) solving the aforementioned OCPs
is inherently open-loop: The actions are applied without monitoring the actual evolution of
the system. In reality, such controllers are prone to fail reaching the desired state due to
plant-model-mismatch (borrelli et al., 2017). Moreover, the optimisation problem in Definition
4.1 makes the unrealistic assumption that future disturbances, wn (n = 0, . . . , N), are known.
In this work, we consider the closed-loop strategy known as Receding-Horizon Control (RHC),
or Model Predictive Control (MPC), which provides a framework to deal with these issues.

The MPC strategy consists of, at every instant k ∈ N, solving the OCP in Eq. (4.3) for the control
horizon indexed by n ∈ [k, k+N ], then applying only the first control action to the process. The
initial state at each control horizon is fixed by Φ(xk, xk+N ) = xk − x̂k, with x̂k assumed to be
directly measured from the process. Thus, the strategy allows for re-optimising control actions
whenever the actual state deviates from the predicted trajectory. Moreover, disturbances are
held constant over each horizon, wn = ŵk (n = k, . . . , k+N), with ŵk known. This accounts for
the future disturbances being unknown. To satisfy a realistic setup, disturbances are assumed to
be measured given sampling period ∆tw ≥ 0 such that ŵk = w(b k∆t

∆tw c∆tw). Formally:
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Definition 4.2. (Model predictive control, MPC). Consider the conditions presented in Defini-
tion 4.1. Given (x̂k, ŵk), the model predictive control (MPC) strategy consists in solving, for
each time instant k ∈ N, optimal control problems in the form

min
xk, · · · , xk+N ,
uk, · · · , uk+N−1

JMPC(x, u) =
k+N−1∑
n=k

L(xn, un) + Lf (xk+N ) (4.8a)

s.t.
∀n∈[k,k+N ]

xn+1 = f∆t(xn, un, ŵk|θx), (4.8b)
xn ∈ X , un ∈ U , (4.8c)
xk = x̂k, (4.8d)

then applying only the first optimal action, u?k, to the actual process.

This strategy corresponds to an implicit state-feedback control law π(x̂k, ŵk|θu) = u?k, with
(u?k, . . . , u?k+N−1) an optimal solution for Eq. (4.8) given initial state x̂k, disturbance ŵk, and
the set of parameters θu related to the constraint sets and cost functions.

4.2.1 Constrained affine quadratic regulator (c-AQR)

We discuss a class of optimal control problems arising from a specific choice of dynamical
models and cost functions. Specifically, we consider state-space models with affine dynamics
ẋ(t) = z +Ax(t) +Bu(t) +Gw(t). In this case, an analytical solution of the transition function
f∆t(·|θx), Eq. (4.2), leads directly to the discrete-time affine state-space

xk+1 = z∆t +A∆txk +B∆tuk +G∆twk, (4.9)

with matrices A∆t = eA∆t, B∆t = S∆tB, G∆t = S∆tG, and vector z∆t = S∆tz, given auxiliary
matrix S∆t = A−1(eA∆t − I). A derivation of such representation is presented in the Appendix
B. The recursive formula in Eq. (4.7) also admits an analytical solution in case of affine models,

xn+1 = fn∆t(x0, u0, . . . , un) = An+1
∆t x0 +

n∑
k=0

Ak∆tB∆tun−k+1 +
n∑
k=0

Ak∆tG∆twn−k+1 +
n∑
k=0

Akz∆t.

We select the quadratic costs L(·, ·) = ‖xn−xspn ‖2Q+‖un−uspn ‖2R and Lf (·) = ‖xk+N −xspk+N‖2Qf ,
given state (xspn ) and input (uspn ) references, and symmetric weighting matrices Q,Qf � 0 and
R � 0. Moreover, we assume that the constraint sets X and U are convex, so that they can be
represented by linear inequalities X = {x ∈ RNx | Hxx ≤ hx} and U = {u ∈ RNu | Huu ≤ hu}.

Definition 4.3. (Constrained affine quadratic regulator, c-AQR). Consider a system represented
by Eq. (4.9). For quadratic cost functions L(xn, un) = ‖xn−xspn ‖2Q+‖un−uspn ‖2R and Lf (xk+N ) =
‖xk+N − xspk+N‖2Qf , convex constraint sets X and U , and initial condition Φ(·) = xk − x̂k, the
constrained affine quadratic regulator (c-AQR) defines optimal control problems in the form

min
xk, · · · , xk+N ,
uk, · · · , uk+N−1

JAQR(x, u) =
k+N−1∑
n=k

(
‖xn − xspn ‖2Q + ‖un − uspn ‖2R

)
+ ‖xk+N − xspk+N‖

2
Qf

(4.10a)

s.t.
∀n∈[k,k+N ]

xn+1 = z∆t +A∆txn +B∆tun +G∆tŵk, (4.10b)
Hxxn ≤ hx, Huun ≤ hu, (4.10c)
xk = x̂k. (4.10d)
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The weighting matrices Q,Qf � 0 and R � 0 are used to control the importance of specific state
and control variables in the minimization. A common choice is Q = Qf = CTC, such that

‖xn − xspn ‖2CTC = (xn − xspn )TCTC(xn − xspn ) = (yn − yspn )T(yn − yspn ) = ‖yn − yspn ‖2INy ,

with yspn = Cxspn . This choice is motivated by expressing the minimisation in terms of quadratic
measurement and control energies (see Section 3.2.1), and for ensuring closed-loop stability when
(A,B) is stabilizable and (A,C) is detectable (mayne et al., 2000). Thus, the closed-loop xn+1 =
f∆t(xn, π(xn, 0|θu), 0|θx) = A∆txn + Bπ(xn, 0|θu) is able to stabilise the system around each
desired set-point (xspn , uspn ). In the case of uncertain systems, this stability property holds when
disturbances are sufficiently small, while additional conditions are needed otherwise. Without
loss of generality, we will consider Q = Qf = CTQyC, for symmetric Qy � 0 weighting specific
output variables, such that L(xn, un) = ‖yn−yspn ‖2Qy +‖un−uspn ‖2R and Lf (xk+N ) = L(xk+N , 0).

The transcription of a c-AQR to a standard nonlinear program specialises:

Theorem 4.2. (c-AQR Transcription). Consider the optimal control problem in Definition.
4.3. The described optimization can be converted into a quadratic program

min
U

UTHU + gTU + r (4.11a)

s.t. EuU ≤ eu (4.11b)

with decision vector U = (xk, . . . , xk+N , uk, . . . , uk+N−1) ∈ R(N)Nx+(N−1)Nu and symmetric
matrix H = HT � 0. Assuming the sequential approach, the problem reduces to decision vector
U = (uk, . . . , uk+N−1) ∈ R(N−1)Nu and positive definite matrix H = HT � 0.

A proof of this Theorem is provided in Appendix B. Quadratic programs comprise a well-studied
class of nonlinear optimisation problems that are common in optimal control problems. Moreover,
the QP described in Theorem 4.2 is a convex optimisation problem: Optimal solutions can be
efficiently obtained even for very large-scale systems (boyd; vandenberghe, 2004).

4.3 Zero-offset affine quadratic regulator
The main goal in most control applications is to drive a system to desired states, known as
set-points, while rejecting disturbances that might cause offset from these objectives. In the class
of applications known as regulation control, the goal is to stabilize the system around a single
fixed set-point SP = (xsp, usp), at all times. Conversely, control problems known as reference
tracking control are concerned with reaching set-points SP = {(xspm , uspm)}Mm=0, sampled from
reference trajectories xspm = xsp((m+ 1)∆tsp) and uspm = usp((m+ 1)∆tsp) with period ∆tsp > 0.

In both cases, the control objectives are translated into optimal control problems that minimise the
offsets L(xn, un) = ‖xn−xspn ‖2Q+‖un−uspn ‖2R, described in Section 4.2.1. For systems described by
nonlinear dynamics f∆t(xn, un, wn|θx), this approach requires affine approximations of the state
equations to be used in the dynamical constraints (gros et al., 2020). In regulation control, the
intuitive solution is to consider the linearisation around the fixed-point P := (xsp, usp, wsp, ysp),

ẋ(t) = zf +A∆x(t) +B∆u(t) +G∆w(t), (4.12)

with the Jacobian matrices A = (∂f/∂x)|P ∈ RNx×Nx , B = (∂f/∂u)|P ∈ RNx×Nu , G =
(∂f/∂w)|P ∈ RNx×Nw , and constant vector zf = f(xsp, usp, wsp|θx) ∈ RNx , evaluated at such
point. The variable ∆x(t) = x(t)−xsp (respectively, ∆u(t) = u(t)−usp and ∆w(t) = w(t)−wsp)
is the state (control and disturbance) deviation from the linearisation point. Moreover, all
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constant terms are accumulated in z̃f = zf − (Axsp +Busp +Gwsp), leading to the affine form

ẋ(t) = z̃f +Ax(t) +Bu(t) +Gw(t), (4.13)

which can then be discretised as xn+1 = z̃f∆t +A∆txn +B∆tun +G∆twn according to Eq. (4.9).

Similarly, the usual solution for reference tracking is to consider the collection of linear approxi-
mations around each fixed-point Pm := (xspm , uspm , wspm , yspm ), discretised as

xn+1 = z̃
(m)
f∆t

+A(m)xn +B(m)un +G(m)wn, (4.14)

from Jacobian matrices A(m) = (∂f/∂x)|Pm , B(m) = (∂f/∂u)|Pm , and G(m) = (∂f/∂w)|Pm ,
and constant vector z̃(m)

f = f(xspm , uspm , wspm |θx)− (A(m)xspm +B(m)uspm +G(m)wspm ). We collect all
approximations Eq. (4.14) into a single piecewise affine state equation,

xn+1 =
M∑
m=0

Im=b n∆t
∆tsp

c(z̃
(m)
f +A(m)xn +B(m)un +G(m)wn) (4.15)

where IS is the indicator function with IS = 1 if statement S is true, and IS = 0 otherwise. This
equation “selects” only the m-th state-space (A(m),B(m),G(m)) for which m = b n∆t

∆tsp c. Note that
the regulation control task is a special case of reference tracking with SP = {xspm , uspm}0m=0 and
∆tsp = tf − t0. We use this representation to define the general zero-offset AQR formulation:

Definition 4.4. (Zero-offset AQR). Consider a system represented by Eq. (4.15), given the set-
points Pm := (xspm , uspm , wspm , yspm ). For cost functions L(xn, un) = ‖xn − x̂spn ‖2Q + ‖un − ûspn ‖2R and
Lf (xk+N ) = ‖xk+N − x̂spk+N‖2Qf , with x̂

sp
n = xsp(b (n+1)∆t

∆tsp c∆tsp) and ûspn = usp(b (n+1)∆t
∆tsp c∆tsp),

the Zero-offset AQR defines optimal control problems in the form

min
xk, · · · , xk+N ,
uk, · · · , uk+N−1

JZ-AQR(x, u) =
k+N−1∑
n=k

(
‖xn − x̂spn ‖2Q + ‖un − ûspn ‖2R

)
+ ‖xk+N − x̂spk+N‖

2
Qf

(4.16a)

s.t.
∀n∈[k,k+N ]

xn+1 = ∑M
m=0 Im=b n∆t

∆tsp
c(z̃

(m)
f +A(m)xn +B(m)un +G(m)ŵk), (4.16b)

Hxxn ≤ hx, Huun ≤ hu, (4.16c)
xk = x̂k. (4.16d)

As only a single affine model is active during each n-th time instant, this controller shares the same
properties as the c-AQR in Section 4.2.1. In general, the set-points (xspm , uspm) from linearisation
points Pm = (xspm , uspm , wspm , yspm ) are selected to be steady-states, i.e., f(xspm , uspm , wspm |θx) = 0 for a
fixed disturbance wspm . During operation, it is also possible to update all linearisations at each
n-th time instant by having wspm = ŵn = w(b n∆t

∆tw c∆tw), the last available measurement. This
ensures that the linear approximations take into account the true disturbance values.

In practice, references are not provided for each state-variable, but rather only for a subset of
output variables, ỹspm = Hg(xspm |θy) ∈ RNỹ . Matrix H ∈ {0, 1}Nỹ×Ny selects the Nỹ ≤ Ny outputs
of interest. Note that fact is specially true for large-scale systems, in which tailoring references
for each individual variable is a daunting task. In case the references are provided in the form
of continuous-time trajectories, the collection os set-points {(yspm , uspm)}Mm=0 are sampled from
yspm = ysp((m+ 1)∆tsp) and uspm = usp((m+ 1)∆tsp). In such cases, state and input set-points
satisfying the desired output references are computed according to the nonlinear optimisation:
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Definition 4.5. (Reference steady-state optimisation). For a reference output ỹspm ∈ RNỹ
and input ûspm ∈ RNu , and given symmetric weighting matrices Wy,Wu � 0 and disturbances
ŵsp ∈ RNw , the linearisation point Pm = (xspm , uspm , ŵspm , yspm ) is the pair (xspm , uspm) that solves

min
xspm ,u

sp
m

JSP(xspm , uspm) = ‖Hg(xm|θy)− ỹspm‖2Wy
+ ‖uspm − ûspm‖2Wu

(4.17a)

s.t. 0 = f(xsp, usp, ŵsp|θx), (4.17b)
xspm ∈ X sp, uspm ∈ Usp. (4.17c)

In this optimisation, matrices Wy and Wu control the trade-off between satisfying the desired
reference and allowing deviations from a specific control configuration, respectively. The optimisa-
tion with Wu = 0 obtains any steady-state satisfying the reference. Conversely, selecting Wu � 0
and uspm = 0 leads to a pair (xspm , uspm) of minimum L2 control effort that is close enough to set-point
ỹspm . Moreover, it is possible to relax the constraint Eq. (4.17b) as ‖f(xsp, usp, ŵsp|θx)‖2 ≤ ε, for
any ε > 0, when feasible steady-states satisfying the output requirements are non-existent.
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5 Moving horizon estimation
In reality, dynamical models are always uncertain and the internal state of a system is unknown
but partially observed through the measurements, i.e., it is a latent variable. We thus concern
ourselves with the state estimation task for systems described the stochastic state-space

ẋ(t) = f(x(t), u(t), w(t)|θx); (5.1a)
y(t) = g(x(t), v(t)|θy), (5.1b)

with process noise w(t) i.i.d∼ pw(w(t)|θw) and measurement noise v(t) i.i.d∼ pv(v(t)|θv). The first
random variable summarises the uncertainty on the state dynamics due to exogenous disturbances
and plant-model mismatch, while the latter models the uncertainty in the measurements due
to noisy sensors. This model leads to x(t) ∼ px(x(t)|u(t), w(t), θx), the latent variable to be
estimated, and y(t) ∼ py(y(t)|x(t), v(t), θy), for which sensor data is available. We limit ourselves
to measurement processes with additive noise, i.e., y(t) = g(x(t), v(t)|θy) = g(x(t)|θy) + v(t).

In this section, we formulate the state estimation task of reconstructing the internal state of
system through partial noisy measurements as a maximum a posteriori (MAP) estimation
task. We adopt a discretise-then-optimise approach of solving optimal state estimation (OEP)
problems, and then we overview the Moving Horizon Estimation (MHE) strategy as a closed-loop
estimator. Additionally, we discuss the constrained affine Gauss-Markov (c-AGM) estimator
arising from specific assumptions over the stochastic model and probabilistic distributions.

5.1 Inference problem and MAP estimation
We assume a discrete measurement process in which observations are available given a period
∆t > 0, such that yk = y(k∆t). Thus, for each time interval t ∈ [tk, tk+1), we consider piecewise
constant inputs w(t) = w(tk) and u(t) = u(tk), with tk = k∆t the k-th time instant at which a
measurement y(tk) is received. As in Section 4.1, the discrete-time state dynamics are

xk+1 = f∆t(xk, uk, wk|θx) = xk +
∫ tk+1

tk

f(x(τ), uk, wk|θx)dτ, (5.2)

with xk = x(k∆t), uk = u(k∆t) and wk = w(k∆t). The discrete-time stochastic state-space is

xk+1 = f∆t(xk, uk, wk|θx); (5.3a)
yk = g(xk|θy) + vk. (5.3b)

with process noise wk
i.i.d∼ pwk(wk|θw) and measurement noise vk

i.i.d∼ pvk(vk|θv), and given initial
state x0 ∼ px0(x0|θx0). The model Eq. (5.3) can be interpreted as a Hidden Markov Model
(HMM), in which X = {x0, x1, . . .} is a Markov chain of latent variables and Y = {y0, y1, . . .}
are the corresponding observations (bishop, 2006). Specifically, the Markov property determines

• p(xk+1|x0, . . . , xk, u0, . . . , uk, w0, . . . , wk) = p(xk+1|xk, uk, wk), the transition distribution
modelling the probability of reaching xk+1 from (xk, uk, wk).

• p(yk|x0, . . . , xk) = p(yk|xk), the emission distribution modelling the probability of the
measurement yk being emitted from the state xk.

The state estimation problem translates to the inference problem of determining the distribution
P (x,w|y) = p(x0, . . . , xk+1, w0, . . . , wk|y0, . . . , yk), the probability of a trajectory given the
measurements. Considering a Bayesian treatment, this distribution is computed as the posterior

P (x,w|y) = p(y0, . . . , yk|x0, . . . , xk+1, w0, . . . , wk)p(x0, . . . , xk, w0, . . . , wk)
p(y0, . . . , yk)

, (5.4)
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where p(y0, . . . , yk|x0, . . . , xk+1, w0, . . . , wk) and p(x0, . . . , xk+1, w0, . . . , wk) are known as the
likelihood and prior distributions, respectively, and we omit the known (u0, . . . , uk) for notation
simplicity. In general, the distribution P (x,w|y) is numerically approximated (e.g., using
Markov Chain Monte Carlo methods), as analytical solutions only exist under specific conditions
(maybeck, 1979). Instead of determining P (x,w|y), we focus on obtaining an optimal estimate
(x̂0, . . . , x̂k+1, ŵ0, . . . , ŵk) by solving the maximum a posteriori (MAP) estimation problem

max
x0, · · · , xk+1,
w0, · · · , wk

P̃ (x,w|y) = p(y0, . . . , yk|x0, . . . , xk+1, w0, . . . , wk)p(x0, . . . , xk, w0, . . . , wk), (5.5)

with P̃ (x,w|y) ∝ P (x,w|y) as p(y0, . . . , yk) is constant. The estimate (x̂0, . . . , x̂k+1, ŵ0, . . . , ŵk)
corresponds to one of the modes from the posterior distribution P (x,w|y). This maximisation
can also be written in terms of the known distributions px0(x0|θx0), pvk(vk|θv) and pwk(wk|θw):

Lemma 5.1. (Maximum a posteriori estimate). Consider the HMM described in Eq. (5.3), with
x0 ∼ px0(x0|θx0), vk

i.i.d∼ pvk(vk|θv) and wk
i.i.d∼ pwk(wk|θw). The maximum a posteriori (MAP)

estimate from the posterior probability P (x,w|y) is the solution of

max
x0, · · · , xk+1,
w0, · · · , wk

P̃ (x,w|y) = px0(x0)
k∏

n=0
pv(vn|θv)pw(wn|θw) (5.6a)

s.t.
∀n∈[0,k]

xn+1 = f∆t(xn, un, wn|θx), (5.6b)
xn ∈ X , wn ∈ W. (5.6c)

A detailed derivation is provided in Appendix B. Furthermore, we note that the maximisation
in Lemma 5.1 is equivalent to minimising the negative of the log-posterior distribution,

min
x0, · · · , xk+1,
w0, · · · , wk

− log P̃ (x,w|y) = − log px0(x0)−
k∑

n=0
(log pv(vn) + log pw(wn)) ,

under the same constraints. Motivated by this new cost functional, we limit ourselves to the case
of distributions from the exponential family, px0(x0|θx0) = e−L0(x0|θx0 ), pvk(vk|θv) = e−Lv(vk|θv) =
e−Lv(yk−g(xk)|θv) and pwk(wk|θw) = e−Lw(wk|θw). Under such assumptions, the cost functional is

J∆t(x,w|y) , − log P̃ (x,w|y) = L0(x0|θx0) +
k∑

n=0
(Lv(yn − g(xn)|θv) + Lw(wv|θw)) .

Moreover, let L(xn, wn) = Lv(yn − g(xn)|θv) + Lw(wv|θw) denote the stage cost function. The
resulting optimisation is denoted as an optimal estimation problem (OEP). Formally:

Definition 5.1. (Discrete-time optimal estimation problem). Consider a system represented
by Eq. (5.3). For x0 ∼ e−L0(x0|θx0 ), vk

i.i.d∼ e−Lv(yk−g(xk)|θv) and wk
i.i.d∼ e−Lw(wk|θw), and support

sets X and W , a optimal estimation problem is defined as an optimisation problem in the form

min
x0, · · · , xk+1,
w0, · · · , wk

J∆t(x,w|y) = L0(x0) +
k∑

n=0
L(xn, wn) (5.7a)

s.t.
∀n∈[0,k]

xn+1 = f∆t(xn, un, wn|θx), (5.7b)
xn ∈ X , wn ∈ W. (5.7c)



35

The optimisation in Definition. 5.1 has similar form to the optimal control problems presented
in Chapter 4. Thus, the same solution approaches can be applied. The OEP is solved by the
direct approach of transcribing the problem into a standard nonlinear program (NLP), then
solving it numerically. Specifically, consider the constrained nonlinear program,

min
x,w

J∆t(x,w) (5.8a)

s.t. G(x,w) = 0, H(x,w) ≤ 0, (5.8b)

where x = (x0, . . . , xk+1) ∈ R(k+1)Nx and w = (w0, . . . , wk) ∈ RkNw are the decision vectors,
function G(x,w) : R(k+1)Nx × RkNw → Rk is obtained by collecting all dynamical constraints in
Eq. (5.7b), and H(x,w) : R(k+1)Nx × RkNw → RNµ represents both constraint sets X and W in
Eq. (5.7c). A candidate solution is obtained from the Karush-Kuhn-Tucker (KKT) conditions,

∇L(x,w, λ, µ) = 0 (5.9a)
G(x,w) = 0, H(x,w) ≤ 0, (5.9b)

µ ≥ 0, µjHj(x,w) = 0 (j = 1, . . . , Nµ), (5.9c)

with Lagrangian function L(x,w, λ, µ) = J∆t(x,w) + λTG(x,w) + µTH(x,w) defined given the
Lagrange multipliers λ = [λ0 · · · λk]T ∈ Rk+1 and µ = [µ0 · · · µNµ ]T ∈ RNµ+1. Considering
inequalities Hn(x, u) = Hn(xn, wn), n = 0, . . . , k, the KKT conditions for the NLP transcribed
from Definition 5.1 have a specific structure:

Lemma 5.2. (KKT Conditions for the OEP). Considering the NLP in Eq (5.8) constructed by
the OEP in Definition 5.1, the KKT conditions (with indices n = 0, . . . , k) are given by

λ0 = ∇x0L0(x0), (5.10a)

λn = ∇xnL(xn, wn) +
(∂f∆t
∂xn

)T∣∣∣
(xn,un,wn)

λn+1 +
( ∂H
∂xn

)T∣∣∣
(xn,wn)

µn, (5.10b)

0 = ∇wnL(xn, wn) +
(∂f∆t
∂wn

)T∣∣∣
(xn,un,wn)

λn+1 +
( ∂H
∂wn

)T∣∣∣
(xn,wn)

µn, (5.10c)

0 = xn+1 − f∆t(xn, un, wn|θx), H(x,w) ≤ 0, (5.10d)
µ ≥ 0, µnHn(xn, wn) = 0. (5.10e)

We denote Eqs. (5.10a, 5.10b) and Eq. (5.10c) as the adjoint and noise equations, respectively.
As in Section 4.1, the Lagrangian is a partially separable function admitting a decomposition
L(x,w, λ, µ) = ∑k

n=0 Ln(xn, wn, λ, µ). Thus, also the OEP in Definition 5.1 characterise sparse
optimisation problems. Specifically, it is possible to verify that the Hessian ∇2L has a block-
diagonal structure. As a consequence, the direct approach can benefit from sparsity-exploiting
algorithms to efficiently solve for optimal estimates (ŵ?1, . . . , ŵ?k) and state (x̂?0, . . . , x̂?k+1).

Despite the sparsity pattern, the optimisation problems described are still problematic for large-
scale state-spaces as the total number of decision variables, (k + 1)Nx + kNw, is considerably
large. Alternatively, it is possible to simplify the problem by considering the recursive formula

xn+1 = fn∆t(x0, w0, . . . , wn) =
{
f∆t(fn−1

∆t (x0, w0, . . . , wn−1), un, wn) n > 0
x0 n = 0

, (5.11)

the forward simulation of f∆t(·) starting at initial state x0. Thus, dependence on intermediate
states (x1, . . . , xk+1) can be removed from the objective functional Eq. (5.7a) by rewriting it as

J∆t(x0, w|y) = L0(x0) +∑k
n=0 L(fn−1

∆t (x0, w0, . . . , wn−1), wn)
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For this reduced optimisation, now defined for only Nx + kNw decision variables, each Newton’s
method iteration consists on the sequential approach of first computing (x1, . . . , xk+1) and
(λ0, . . . , λk) by forward simulation, then updating (x0, w1, . . . , wk). This is preferable over the
simultaneous approach when the number of disturbance variables is small, i.e., when Nx � Nw.

5.2 Moving horizon estimation strategy
Unlike the open-loop OCP of Chapter 4, obtaining the current disturbance ŵk and state x̂k
estimates from the OEP is already performed in a closed-loop fashion, as the optimisation is
solved at each k-th time instant. This approach, known as the full information problem, suffers
from the fact that the size of the estimation horizon, and thus the number of decision variables
(k + 1)Nx + kNw, is not fixed. As a result, the complexity of solving the OEP scales at least
linearly with time. This raises obvious technical problems (e.g., increasing computer burden)
and also introduces issues for the initial state sensitivity when the sequential approach is used.

We approach this issue by relying on a Moving Horizon Estimation (MHE) strategy. Consider the
separation of the cost functional in Definition 5.1 into time intervals [0, k−N ] and [k−N + 1, k],

J∆t(x,w|y) =
(
L0(x0) +

k−N∑
n=0

L(xn, wn)
)

+
k∑

n=k−N+1
L(xn, wn),

from which we define Φ(x0, w1, . . . , wk−N ) = L0(x0) +∑k−N
n=0 L(xn, wn). The estimation horizon

can thus be truncated by considering an approximation for Φ(·) depending only on a fixed number
of variables. We consider a MHE strategy of approximating Φ(·) ≈ L0(xk−N+1), assuming that
all information about (x0, . . . , xk−N ) and (w0, . . . , wk−N ) is summarised in the state xk−N+1.
Implicitly, the uncertainty about each initial state is given by xk−N+1 ∼ px0(xk−N+1|θx0).

Definition 5.2. (Moving horizon estimation, MHE). Consider the conditions presented in
Definition 5.1. The moving horizon estimation (MHE) strategy consists in solving, for each time
instant k ∈ N, optimal estimation problems in the form

min
xk−N+1, · · · , xk+1
wk−N+1, · · · , wk

JMHE(x,w|y) = L0(xk−N+1) +
k∑

n=k−N+1
L(xn, wn) (5.12a)

s.t.
∀n∈[k−N+1,k]

xn+1 = f∆t(xn, un, wn|θx), (5.12b)
xn ∈ X , wn ∈ W. (5.12c)

In the sequential method, intermediate estimates (x̂k−N+2, . . . , x̂k+1) are obtained by forward sim-
ulating f∆t(·) using (x̂k−N+1, ŵk−N+1, . . . , ŵk). The moving-horizon strategy thus corresponds to
an implicit state-estimation function π(yk−N+1, . . . , yk|θw) = x̂k, with (x̂k−N+1, ŵk−N+1, . . . , ŵk)
an optimal solution for Eq. (5.12) given measurements (yk−N+1, . . . , yk), and the set of parame-
ters θw related to the probabilistic distributions and support sets.

5.2.1 Constrained affine Gauss-Markov estimator (c-AGM)

We discuss a class of optimal estimation problems arising from a specific choice of models
and probabilistic distributions. As in Section 4.2.1, we consider affine state-space models with
dynamics ẋ(t) = z+Ax(t)+Bu(t)+Gw(t) and outputs y(t) = Cx(t)+v(t). A transition function
f∆t(·|θx), Eq. (5.2) is again obtained analytically, leading to the discrete-time state-space

xk+1 = z∆t +A∆txk +B∆tuk +G∆twk, (5.13a)
yk = C∆xk + vk, (5.13b)
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with matrices A∆t = eA∆t, B∆t = S∆tB, G∆t = S∆tG and C∆t = C, and vector z∆t = S∆tz,
given auxiliary matrix S∆t = A−1(eA∆t − I). Again, the recursive formula in Eq. (4.7) is

xn+1 = fn∆t(x0, u0, . . . , un) = An+1
∆t x0 +

n∑
k=0

Ak∆tB∆tun−k+1 +
n∑
k=0

Ak∆tG∆twn−k+1 +
n∑
k=0

Akz∆t.

We assume Gaussian distributions xk−N+1 ∼ N (x̄k−N+1, Qx0), wn i.i.d∼ N (w̄n, Rw), and vn i.i.d∼
N (0, Qv), given means x̄k−N and w̄n (n = k−N+1, . . . , k), and covariance matrices (Qx0 , Qv, Rw).
As a consequence, the states are distributed as xn ∼ N (x̄n, Qxn), for all n = k−N+1, . . . , k+1,
and Eq. (5.13) characterise a Gauss-Markov process X = {xn}kk−N+1. Moreover, we assume that
the constraint sets X and W are convex, so that they can be represented by linear inequalities
X = {x ∈ RNx | Hxx ≤ hx} and W = {w ∈ RNw | Hww ≤ hw}. We define the MHE problem:

Definition 5.3. (Constrained affine Gauss-Markov estimator, c-AGM). Consider a system
represented by Eq. (5.3). For xk−N+1 ∼ N (x̄n−N+1, Qx0), wn ∼ N (w̄n, Rw), vn ∼ N (0, Qv),
and convex support sets X and W, the constrained affine Gauss-Markov estimator (c-AGM)
defines optimal estimation problems in the form

min
xk−N+1, · · · , xk+1
wk−N+1, · · · , wk

JAGM(·) = ‖xk−N+1 − x̄k−N+1‖2Q−1
x0

+
k∑

n=k−N+1

(
‖yn − Cxn‖2Q−1

v
+ ‖wn − w̄n‖2R−1

w

)
(5.14a)

s.t.
∀n∈[k−N+1,k]

xn+1 = z∆t +A∆txn +B∆tun +G∆twn, (5.14b)
Hxxn ≤ hx, Hwwn ≤ hw. (5.14c)

From the optimisation perspective, weighting matrices Q−1
v and R−1

w penalise the mismatches
between outputs Cxn and measurements yn, and the deviations of estimated disturbances wn
from means w̄n, respectively. Due to the recursive nature of the moving-horizon strategy, the
intuitive choice for the initial state and disturbance means are the estimates from the previous
estimation horizon, i.e., x̄k−N+1 = x̂k−N+1 and w̄n = ŵn (n = k−N+1, . . . , k−1), and repeated
w̄k = ŵk−1 for the new disturbance vector. This choice recursively satisfy

L0(xk−N+1) ≤ min
xk−2N+1, · · · , xk−N+1,
wk−2N+1, · · · , wk−N

L0(xk−2N+1) +
k−N∑

n=k−2N+1
L(xn, wn).

For detectable systems, this condition ensures stability for the MHE (rao et al., 2003). This is
analogous to the stabilizability condition for closed-loop stable MPC controllers (Section 4.2.1).

The transcription of a c-AGM to a standard nonlinear program specialises:

Theorem 5.3. (c-AGM Transcription) Consider the optimal estimation problem in Definition.
5.3. The described optimization can be converted into a quadratic program

min
W

WTHW + gTW + r (5.15a)

s.t. EwW ≤ ew, (5.15b)

with decision vector W = (xk−N+1, . . . , xk+1, wk−N+1, . . . , wk) ∈ R(N)Nx+(N−1)Nw and symmet-
ric matrix H = HT � 0. Assuming the sequential approach, the problem reduces to decision vector
W = (xk−N+1, wk−N+1, . . . , wk) ∈ RNx+(N−1)Nw and positive semi-definite matrix H = HT � 0.
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A proof of this theorem is provided in Appendix B. As already discussed, quadratic programs
comprise a well-studied class of nonlinear optimisation problems that are common in control
problems. The QP described in Theorem 5.3 is a convex optimisation problem: Optimal estimates
can be efficiently obtained even for very large-scale systems.

For systems described by nonlinear dynamics xn+1 = f∆t(xn, un, wn|θx), the c-AGM requires
affine approximations of the state-equations to be used as dynamical constraints, as in Section
4.3. In this case, the approximations are to be taken over the most likely trajectory, rather
than for specific set-points satisfying some requirements. An intuitive choice is to consider the
linearisations around fixed-points Pn := {(x̂n, un, ŵn, ŷn)}kn=k−N+1,

ẋ(t) = z
(n)
f +A(n)∆x(t) +B(n)∆u(t) +G(n)∆w(t), (5.16a)

y(t) = C(n)x(t) + v(t), (5.16b)

for {(x̂n, ŵn)}k−1
n=k−N the estimates from the previous horizon, with the Jacobian matrices

A = (∂f/∂x)|P (n) ∈ RNx×Nx , B = (∂f/∂u)|P (n) ∈ RNx×Nu , G = (∂f/∂w)|P (n) ∈ RNx×Nw , and
C = (∂g/∂x)|P (n) ∈ RNy×Nx , and constant vector zf = f(xsp, usp, wsp|θx) ∈ RNx . The last
fixed-point pair is fixed as (x̂k, ŵk) = (x̂k−1, ŵk−1). We simplify the model by collecting all
constant terms in z̃f = zf − (A(n)x̂n +B(n)un +G(n)ŵn), then discretising it as

xn+1 = z
(n)
f∆t

+A
(n)
∆t xn +B

(n)
∆t un +G

(n)
∆twn, (5.17a)

yn = C
(n)
∆t xn + vn. (5.17b)

As the linearisation changes every time-step, this representation consists on a time-varying affine
state-space model. We thus consider Eq. (5.17) for the dynamical constraints in Eq. (5.14b).
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6 Output model predictive control
The model predictive controllers described in Chapter 4 assumes that the state- and disturbance-
vectors are directly accessible. This unrealistic assumption motivates the discussions on moving
horizon estimators in Chapter 5. In this section, we discuss the Output Model Predictive Control
(Output-MPC) strategy that combines both optimal control and estimation methods to perform
predictive control when only noisy measurements of the process state are available.

Considering the system described by an stochastic state-space model

ẋ(t) = f(x(t), u(t), w(t)|θx); (6.1a)
y(t) = g(x(t)|θy) + v(t), (6.1b)

with process noise w(t) ∼ pw(w(t)|θw) and measurement noise v(t) ∼ pv(v(t)|θv), optimal
controllers and estimators are obtained using the discretise-then-optimise strategies described
in Sections 4 and 5, respectively. The controller considers a discretisation of Eq. (6.1) based
on piecewise constant inputs u(t) = u(tk) and w(t) = w(tk), for t ∈ [tk, tk+1), where tk = ∆t
is the k-th time instant given the period ∆t > 0. Similarly, the estimator considers the same
discretisation for a different ∆te > 0, corresponding to the measurement process sampling period.
At each time instant tk = k∆t, the output MPC strategy consists on first estimating (x̂k, ŵk) by
solving an OEP (Definition 5.1) for the estimation horizon t ∈ [(k−Ne+1)∆te, k∆te] of size Ne,
then solving an OCP (Definition 4.1) for the control horizon t ∈ [k∆t, (k+N)∆t] of size N using
(x̂k, ŵk) as initial conditions. Formally, this controller is defined by:

Definition 6.1. (Output model predictive control, Output MPC). Consider the conditions
presented in Definitions 4.1 and 5.1. For each time instant k ∈ N, the output model predictive
control (Output-MPC) strategy consists on first solving the optimal estimation problem

min
xk−Ne+1, · · · , xk+1
wk−Ne+1, · · · , wk

JMHE(x,w|y) = L0(xk−Ne+1) +
k∑

n=k−Ne+1
L(xn, wn) (6.2a)

s.t.
∀n∈[k−Ne+1,k]

xn+1 = f∆te(xn, un, wn|θx), (6.2b)
xn ∈ X , wn ∈ W, (6.2c)

to obtain estimates (x̂k, ŵk), then solving the optimal control problem

min
xk, · · · , xk+N ,
uk, · · · , uk+N−1

JMPC(x, u) =
k+N−1∑
n=k

L(xn, un) + Lf (xk+N ) (6.3a)

s.t.
∀n∈[k,k+N ]

xn+1 = f∆t(xn, un, ŵk|θx), (6.3b)
xn ∈ X , un ∈ U , (6.3c)
xk = x̂k, (6.3d)

and applying only the first optimal action, u?k, to the actual process.

In this optimal control strategy, all the conditions and properties stated in Sections 4.2 and
5.2 still follow. Namely, the optimisations are solved using the direct approach of transcribing
each problem as a nonlinear program, then solving it numerically. Moreover, both the controller
and the estimator have desirable stability properties for stabilizable and detectable systems (or,
equivalently, stable systems). In the following, we discuss the output affine quadratic regulator
resulting from the combination of a c-AQR (Section 4.2.1) and a c-AGM (Section 5.2.1).
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6.1 Output affine quadratic regulator (Output-AQR)
A specific class of output predictive controllers arise from the usual choice of cost functions and
constraints. Specifically, we are concerned with stochastic affine state-space models

ẋ(t) = z +Ax(t) +Bu(t) +Gw(t),
y(t) = Cx(t) + v(t),

from which a discrete-time realisations with dynamics xk+1 = z∆t +A∆txk +B∆tuk +G∆twk
and outputs yk = C∆xk + vk are obtained as in Eqs. (4.9) and (5.13).

We assume a controller based on quadratic costs functions L(·, ·) = ‖xn − xspn ‖2Q + ‖un − uspn ‖2R
and Lf (·) = ‖xk+N − xspk+N‖2Qf , given state (xspn ) and input (uspn ) references, and symmetric
weighting matrices Q,Qf � 0 and R � 0. Moreover, we assume Gaussian distributions
xk−Ne+1 ∼ N (x̄k−Ne+1, Qx0), vn i.i.d∼ N (0, Qv), and wn

i.i.d∼ N (w̄n, Rw), given means x̄k−Ne
and w̄n (n = k−Ne+1, . . . , k) and covariance matrices (Qx0 , Qv, Rw). Finally, the constraint
sets X , U , and W are assumed convex, so that they can be represented by linear inequalities
X = {x ∈ RNx | Hxx ≤ hx}, U = {u ∈ RNu | Huu ≤ hu} and W = {w ∈ RNw | Hww ≤ hw}.
Under such conditions, we formally define the constrained output affine quadratic regulator:

Definition 6.2. (Output affine quadratic regulator, Output c-AQR). Consider the system
described by Eq. (6.4). Let xk−Ne+1 ∼ N (x̄k−Ne+1, Qx0), wn ∼ N (w̄n, Rw) and vn ∼ N (0, Qv),
assume cost functions L(·, ·) = ‖xn − xspn ‖2Q + ‖un − uspn ‖2R and Lf (·) = ‖xk+N − xsp‖2Qf , and
convex sets X , U and W. For each time instant k ∈ N, the output affine quadratic regulator
(Output-AQR) strategy consists on first solving the optimal estimation problem

min
xk−Ne+1, · · · , xk+1,
wk−Ne+1, · · · , wk

JAGM(·) = ‖xk−Ne+1 − x̄k−Ne+1‖2Q−1
x0

+
k∑

n=k−Ne+1

(
‖yn − Cxn‖2Q−1

v
+ ‖wn − w̄n‖2R−1

w

)
(6.5a)

s.t.
∀n∈[k−Ne+1,k]

xn+1 = z∆te +A∆texn +B∆teun +G∆tewk, (6.5b)
Hxxn ≤ hx, Hwwn ≤ hw, (6.5c)

to obtain estimates (x̂k, ŵk), then solving the optimal control problem

min
xk, · · · , xk+N ,
uk, · · · , uk+N−1

JAQR(·) =
k+N−1∑
n=k

(
‖xn − xspn ‖2Q + ‖un − uspn ‖2R

)
+ ‖xk+N − xspk+N‖

2
Qf

(6.6a)

s.t.
∀n∈[k,k+N ]

xn+1 = z∆t +A∆txn +B∆tun +G∆tŵk, (6.6b)
Hxxn ≤ hx, Huun ≤ hu, (6.6c)
xk = x̂k, (6.6d)

and applying only the first optimal action, u?k, to the actual process.

As in the previous sections, both problems in Definition 6.2 are transcribed into convex quadratic
optimisation problems (see Lemmas 4.2 and 5.3). For nonlinear systems, the dynamic constraint
of the OCP, Eq. (6.6b), is represented by a collection of linearisations {(A(k)

∆t , B
(k)
∆t , G

(k)
∆t )}Kk=0

according to the choice of set-points described in Section 4.3. Moreover, the dynamic constraint
of the OEP, Eq. (6.5b), is represented by the time-varying state-space from linearisations
(A(n)

∆te , B
(n)
∆te , G

(n)
∆te , C

(n)
∆te) based on the previous MHE estimates (Section 5.2.1).
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7 Analysis of activated sludge plant models
In this section, we analyse the full-state controllability and full-state observability properties for
the class of activated sludge plants represented by Eq. (2.4) defined in Chapter 2. The discus-
sion starts with the structural controllability and observability analysis for matrices (A,B,C)
describing the structure of the system. Then, a classical analysis of stability, controllability, and
observability, is performed for a suggested linearisation described by matrices (ASS , BSS , CSS).
Finally, a minimal realisation based on this linearisation is used to discuss the controllability
and observability of the system in qualitative terms.

7.1 Structural controllability and observability analysis
For the activated sludge plant ẋ(t) = f(x(t), u(t), w(t)|θx) with measurements y(t) = g(x(t)|θy)
the structural matrices A ∈ RNx×Nx , B ∈ RNx×Nu , and C ∈ RNy×Nx are obtained from the
Jacobians A = ∂f/∂x, B = ∂f/∂u, C = ∂g/∂x, with Nx = 145, Nu = 13 and Ny = 15. The
associated digraph G = (V, E), Figure 7.1, is defined by the vertex set

V = VA ∪ VB ∪ VC = {x1, . . . , xNx} ∪ {u1, . . . , uNu} ∪ {y1, . . . , yNy}

and the directed edge set

E = EA ∪ EB ∪ EC = {(xj , xi) | Ai,j 6= 0} ∪ {(uk, xi) | Bi,k 6= 0} ∪ {(xj , yk) | Ck,j 6= 0}.

In the following we discuss the structural controllability and observability of the plant through
pairs (A,B) and (A,C), and associated digraphs Gc = (Vc, Ec) and Go = (Vo, Eo), respectively.
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Figure 7.1: Network G = (V, E) (left panel) associated to structured system (A,B,C) (right panels).
State vertices xi ∈ VA are in black, input vertices uk ∈ VB are in blue, and output vertices yk ∈ VC are in
red. State-state edges (xi, xj) ∈ EA, input-state edges (uk, xj) ∈ EB , and state-output edges (xi, yk) ∈ EC

are dyed to match the corresponding entries in (A,B,C). To reduce clutter, state self-loops are omitted.

The structural pair (A,B) associates with the subgraph Gc = (Vc, Ec), with Vc = VA ∪ VB and
Ec = EA∪EB . The topology of Gc = (Vc, Ec) indicates that pair (A,B) is structurally controllable
(Lemma 3.3). The accessibility condition is satisfied since all state vertices are reachable from a
control vertex. Specifically, it is easy to see how they all are reachable through one-edge paths
starting from control vertex QR or QW . The dilation-free condition is satisfied through a perfect
matchingM of size |M| = Nx formed by choosing every state vertex’s self-loop, thus leaving
no vertex unmatched. A perfect matching such asM ensures the dilation-free condition and
suggests that controls are only needed to ensure accessibility. Being structurally controllable, the
system is also full-state controllable in a classical sense for almost all realisations of A and B.
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The structural pair (A,C) associates with the subgraph Go = (Vo, Eo), with Vo = VA ∪ VC
and Eo = EA ∪ EC . The topology of Go = (Vo, Eo) indicates that pair (A,C) is structurally
unobservable (Lemma B.2). As there are no paths from state vertices {SA(r)

ALK}5r=1, {S
S(l)
ALK}10

l=1 and
{SS(l)

O }10
l=7 to any of the output vertices, the accessibility condition is not satisfied. Conversely,

the dilation-free condition is satisfied by the same perfect matching M of size |M| = Nx as
before, obtained by choosing every state vertex’s self-loop. The lack of structural observability
implies that the system is also not full-state observable in a classical sense.

We conclude that, for the activated sludge plant in Eq. (2.4), it is possible to design a control u(t)
that transfers the plant to a desired state, in finite time, for almost any realisation of (A,B). It
is not possible, however, to determine initial state x(0), and thus neither intermediate states x(t),
starting from a measurement y(tf ). Thus, it is also not possible to design a full-state-observer
based on existing measurements, no matter what realisation of (A,C) is used. Being of structural
nature, these conclusions are valid also in a classical sense, whatever the model linearisation.

7.2 Stability, controllability and observability analysis
We now consider the linearisation (ASS , BSS , CSS), corresponding to the benchmark fixed
point SS := (xSS , uSS , wSS , ySS) presented in Section 2.3.1. This linearisation is commonly
utilised in the literature and constitutes the default configuration of the BSM1. The matrices
ASS ∈ RNx×Nx , BSS ∈ RNx×Nu , and CSS ∈ RNy×Nx are obtained from the Jacobians evaluated
at such equilibrium point ASS = (∂f/∂x)|SS , BSS = (∂f/∂u)|SS , CSS = (∂g/∂x)|SS . The,
now weighted, associated digraph GSS = (VSS , ESS), in Figure 7.2, is defined by the vertex set

VSS = VASS ∪ VBSS ∪ VCSS = {x1, . . . , xNx} ∪ {u1, . . . , uNu} ∪ {y1, . . . , yNy}

and the directed edge set

ESS = EASS ∪ EBSS ∪ ECSS = {(xj , xi) | ASSi,j 6= 0} ∪ {(uk, xi) | BSS
i,k 6= 0} ∪ {(xj , yk) | CSSk,j 6= 0}.

In the following, we discuss the stability of this system and then we discuss its controllability
and observability on both structural and conventional sense.
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Figure 7.2: Network GSS = (VSS , ESS) (left) associated to linearisation (ASS , BSS , CSS) (right). State
vertices xi ∈ VASS and state-state edges (xi, xj) ∈ EASS are in black, input vertices uk ∈ VBSS and
input-state edges (uk, xj) ∈ EBSS are in blue, and output vertices yk ∈ VCSS and state-output edges
(xi, yk) ∈ ECSS are in red. State self-loops have been omitted.
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Figure 7.3: Spectrum σ(ASS): Eigenvalues λi ∈ σ(ASS), left, and associated eigenvectors νi(λi), right.
The grid in the complex plane displays lines corresponding to constant damping factors (diagonal lines)
and natural frequencies (vertical lines, in rad/days) for the associated system modes.

The spectrum of ASS , in Figure 7.3, consists of 69 distinct eigenvalues and associated eigenvectors,
σ(ASS) = {λi(ASS), νi(λi)}69

i=1, with {λ1, · · · , λ31} ⊂ R and {(λ32, λ
∗
32), · · · , (λ69, λ

∗
69)} ⊂ C.

Five complex conjugate pairs of eigenvalues have algebraic multiplicity equal to two and two
distinct real eigenvalues have algebraic multiplicities equal to two and twenty-eight, respectively.
The distribution of the eigenvalues in the complex plane shows that most of the system modes
have relatively slow time constants. Moreover, the majority of eigenvalues are still close to the
real axis, indicating that pseudo-oscillatory behaviour in the system modes is not expressive.

Being Re(λi) < 0 for all λi ∈ σ(ASS), then ASS is a stable matrix and the linear system
(ASS , BSS , CSS) is asymptotically stable (Lemma 3.1). This result can also be visualized
through the simulation of individual system modes, shown in Figure 7.4. As the unforced
evolution of the system, for any initial state x(0), is a linear combination of system modes, the
fact that all curves converge to zero directly implies that the system is asymptotically stable.

Figure 7.4: Time evolution of the normalised system modes tkeλit

maxt tkeλit
(k = 0, · · · , µ(λi)− 1) for the

real eigenvalues (top plots) and complex conjugated pairs of eigenvalues (bottom plots) from the spectrum
σ(ASS) = {λi, νi(λi)}Nx

i=1. The curves are grouped based on each mode’s time constant τi = 1/Re[λi].

7.2.1 Controllability analysis

The controllability of this system is assessed through pair (ASS , BSS) and associated digraph
GcSS = (VcSS , EcSS ), with VcSS = VASS ∪VBSS and EcSS = EASS ∪EBSS . As expected, the topology
of GcSS = (VcSS , EcSS ) indicates that (ASS , BSS) is full-state controllable in a structural sense
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Figure 7.5: Pair (ASS , BSS): Eigenvectors νi(λi) for λi ∈ σ(ASS) with rank([λiI −ASS BSS ]) < Nx.

(Lemma 3.3). Thus, for the activated sludge plant with dynamics described by (ASS , BSS), it is
possible to design a control u(t) that transfers the plant to a desired state, in finite time.

As the pair (ASS , BSS) corresponds to the linear time-invariant approximation of Eq. (2.4a) in
the neighbourhood of steady-state point SS := (xSS , uSS , wSS , ySS), it is possible to analyse its
full-state controllability in a conventional sense. We have just shown that pair (ASS , BSS) is
full-state controllable in the structural sense. The classical counterpart of this result can only
be verified using the PBH controllability test (Lemma 3.2), as an accurate computation of the
controllability matrix C = [BSS ASSBSS · · · (ASS)Nx−1BSS ] is unfeasible.

Surprisingly, the PBH test shows that the pair is not full-state controllable in the classical sense,
as a real eigenvalue with algebraic multiplicity equal to twenty-eight leads to a rank-deficient
matrix [λiI − ASS BSS ]. The twenty-eight associated eigenvectors are shown in Figure 7.5.
Interestingly, note that the non-zero entries of these eigenvectors correspond to state variables
relative to soluble matter in the settler’s last layer. This indicates that it is not possible to
design a control u(t) capable of enforcing a desired profile of soluble concentrations in the settler.
Moreover, since ASS is a stable matrix, the eigenvalue failing the PBH test satisfies Re(λi) < 0
such that the pair (ASS , BSS) is thus characterised as stabilizable (Lemma 3.5).

7.2.2 Observability analysis

Furthermore, the observability of this system is assessed through pair (ASS , CSS) and associated
digraph GoSS = (VoSS , EoSS ), with VoSS = VASS ∪ VCSS and EoSS = EASS ∪ ECSS . As expected,
the observability digraph GoSS = (VoSS , EoSS ) indicates that also the pair (ASS , CSS) is not
full-state observable in a structural sense, as there is still no directed path from the state vertices
{SA(r)

ALK}5r=1, {S
S(l)
ALK}10

l=1 and {SS(l)
O }10

l=7 to any of the output vertices.

For completeness, we also analyse the full-state observability of (ASS , CSS) in a conven-
tional sense, as it also corresponds to the linear time-invariant approximation of Eq. (2.4)
in the neighbourhood of steady-state point SS := (xSS , uSS , wSS , ySS). We have just shown
that (ASS , CSS) is unobservable in a structural sense. We verify this result using the PBH
observability test (Lemma B.1), as an accurate computation of the observability matrix
O = [CSST

ASS
T
CSS

T · · · (ASST)Nx−1CSS
T ]T is also unfeasible in this case.

The test confirms that the pair (ASS , CSS) is not full-state observable, as ten distinct eigenvalues,
including two real values with multiplicities equal to two and twenty-eight, respectively, and five
complex conjugated pairs with multiplicities equal to two, all lead to rank-deficient matrices
[λiI −ASS

T
CSS

T ]T. The forty-three eigenvectors associated to such eigenvalues are shown in
Figure 7.6. As before, the non-zero entries of the twenty-eight eigenvectors associated to one of
the real eigenvalues refer to state variables relative to effluent soluble matter. From the remain-
ing fifteen eigenvectors, three have non-zero entries only at state variables {XA(r)

I , X
A(r)
P }5r=1,

while the remaining twelve have non-zero entries only at state variables {SA(r)
I , S

A(r)
ALK}5r=1 and
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Figure 7.6: Pair (ASS , CSS): Eigenvectors νi(λi) for λi ∈ σ(ASS) with rank([λiI−ASST
CSST ]T) < Nx.

{SS(l)
I , S

S(l)
ALK}10

l=1. Interestingly, these correspond to concentrations of non-reacting matter within
the process. Moreover, since ASS is a stable matrix, all eigenvalues failing the PBH test satisfy
Re(λi) < 0 such that pair (ASS , CSS) is thus characterised as detectable (Lemma B.3).

We conclude that, for the activated sludge plant described by the linearisation (ASS , BSS , CSS),
it is not possible to design a control u(t) that transfers the plant to a desired state x(tf ) in a
given finite time. Moreover, it is also not possible to determine the initial state x(0), and thus
neither intermediate states x(t), starting from measurement y(tf ).

7.2.3 Minimal realisation and energy-related metrics

In this section, we provide a qualitative analysis of controllability and observability. We start
by analysing the effort associated with controlling or observing each state variable individually,
and then proceed to analyse the entire system using a minimal realisation of the linearisation
(ASS , BSS , CSS) corresponding to the default fixed point SS := (xSS , uSS , wSS , ySS).

Considering the linearisation (ASS , BSS , CSS), the average energy required to respectively control
or reconstruct the full-state by directly controlling or measuring only one individual state variable
is quantified by its average controllability and average observability centralities (Section 3.2.1).
The results (Figure 7.7) show that the energy required to control the entire state-space is among
the lowest if we were to actuate on some control only affecting biomass concentrations (XA(r)

BH ,
X
A(r)
BA , and XA(r)

P ) or particulate inert organic matter (XA(r)
I ) on the reactors. This reflects the

fact that such variables are central to the process, but will evolve slowly if not directly controlled.
Conversely, the energy required by the system would be the highest if we were to actuate on
some control only affecting dissolved oxygen (SA(r)

O ). However, it is worth mentioning that
it is still possible to control SA(r)

O (through KLa
(r)), while individually controlling any of the

concentrations XA(r)
BH , XA(r)

BA , XA(r)
P , or XA(r)

I , is practically unfeasible. The analysis also shows
that acting directly on most state variables on the reactors lead to less demanding full-state
controls than directly acting on any state variables within the settler.

Moreover, the results show that the effort required to reconstruct the entire state-space is the
lowest if we were to directly measure the concentration of suspended solids in the bottom of
the settler (XS(1)

SS ). Additionally, the effort required is also among the lowest if we were to
directly measure the biomass concentrations (XA(r)

BH , XA(r)
BA , and XA(r)

P ) and particulate inert
organic matter (XA(r)

I ) in the reactors. Again, this reflects how these variables are central to the
process such that reconstructing the state-vector is more demanding if they are not measured.
In practice, only the concentrations of dissolved oxygen (SA(r)

O ) and nitrate and nitrite nitrogen
(SA(r)
NO ) in each reactor, along with NH+

4 +NH3 nitrogen in the top layer of the settler (SS(10)
NH ),
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Figure 7.7: System (ASS , BSS , CSS): Average controllability centrality CC(nx), top, and average
observability centrality Co(nx), bottom, associated to each state variable.

are directly measured. Conversely, these variables are associated with the highest measurement
effort if used individually to reconstruct the entire state of the process.

Now, we analyse the compound energy-related metrics for the control and measurement configura-
tion of the activated sludge plant. Being the linearisation both uncontrollable and unobservable,
the metrics computed for the Gramians of (ASS , BSS , CSS) will obviously conclude that its
control or state reconstruction are high-demanding. Thus, we turn to analyse the minimal
realisation of (ASS , BSS , CSS) as it preserves the input-output behaviour of the process. The
minimal realisation of (ASS , BSS , CSS), Lemma 3.4, is represented as

ẋco(t) = Acoxco(t) +Bcou(t)
y(t) = Ccoxco(t),

with Aco ∈ RNxco×Nxco , Bco ∈ RNxco×Nu and Cco ∈ RNy×Nxco , for Nxco = 117. As σ(Aco) ⊆
σ(ASS) it follows that Re(λi) < 0 for all λi ∈ σ(Aco), and thus (Aco, Bco, Cco) is a stable system.

Considering this model, we analysed the energy-related metrics defined for the infinite-horizon
controllability (Wc(∞)) and observability (Wo(∞)) Gramians (Section 3.2.1). As the system is
Hurwitz, these Gramians are computed by solving Lyapunov equations AcoWc(∞)+Wc(∞)AT

co =
−BcoBT

co and Wo(∞)AT
co +AcoWo(∞) = −CT

coCco. The metrics, Table 7.1, reveal that control-
ling and observing this system are energy demanding tasks even for the minimal realisation.
Specifically, the fact that λmin(Wc(∞)) and λmin(Wo(∞)) are approximately zero implies that
there exists state-space directions which are practically uncontrollable and unobservable. We

Table 7.1: System (Aco, Bco, Cco): Energy-related metrics.

tr(W ) tr(W †) log(det(W )) λmin(W )

Wc(∞) 1.23 · 105 1.36 · 109 −∞ 1.01 · 10−11

Wo(∞) 0.52 6.76 · 1014 −∞ 5.69 · 10−19

can conclude that, although controllable and observable, the realisation (Aco, Bco, Cco) requires
a very large control and measurement effort in order to access the full state-space. The cu-
mulative coverage of state-space is shown in Fig. 7.8 in terms of normalised cumulative sum
(Λ(N) = ∑N

n=1 λn/
∑Nxco
nx=1 λnx) for the (sorted) eigenvalues of Wc(∞) and Wo(∞). The results

imply that most control and output energy are comprised within a small number of directions.
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Figure 7.8: System (Aco, Bco, Cco): Cumulative sum Λ(N) for the eigenvalues of the infinite-horizon
controllability Gramian Wc(∞), top, and observability Gramian Wo(∞), bottom.

7.2.4 Contradiction between structural and conventional results

When analysing the controllability of the complete system we have shown that (ASS , BSS , CSS) is
controllable in a structural sense but not in the classical sense. This apparent contradiction can be
explained from the analysis of the dilation-free condition applied to network GcSS = (VcSS , EcSS ).
Specifically, as the existence of a self-loop for each state vertex is sufficient to satisfy this
condition, the input vertices are needed only to satisfy the accessibility condition. Whenever
some of the self-loop weights are equal, the dilation-free condition will underestimate the controls
needed for full-state controllability (zhao et al., 2015). This is the case for (ASS , BSS), where
all reactors’ non-reacting components (respectively, all settler’s soluble components) from the
same unit (layer) always have identical self-dynamics.

Consider the non-reacting components SA(r)
a (Sa ∈ {SI , SALK}) and XA(r)

b (Xb ∈ {XI , XP }) in
the r-th reactor. Their dynamics are each represented in Eq. (2.4a) by first-order differential
equations of the forms ṠA(r)

a = QA(r)(SA(r−1)
a − SA(r)

a )− (Q(r)
EC/V

(r))SA(r)
a +R

(r)
a and ẊA(r)

b =
QA(r)(XA(r−1)

b −XA(r)
b )−(Q(r)

EC/V
(r))XA(r)

b +R(r)
b for r = 1, . . . , 5. QA(r) denotes the influent flow-

rate to the r-th reactor and both R(r)
a and R(r)

b indicates the contribution from process reactions.
The model assumes the same influent flow-rate, {QA(r) = (QA+QR+QIN+∑r−1

j=1 Q
(j)
EC)/V (r)

A }5r=1,
with constant volumes V (r)

A . As these components represent non-reacting matter, ∂R(r)
a /∂S

A(r)
a =

∂R
(r)
b /∂X

A(r)
b = 0. For the relevant entries in the Jacobian ∂f/∂x of the dynamics,

∂Ṡ
A(r)
a

∂S
A(r)
a

∣∣∣∣∣∣
SS

=
∂Ẋ

A(r)
b

∂X
A(r)
b

∣∣∣∣∣∣
SS

= −
QA +QR +QIN +∑r

j=1Q
(j)
EC

V
(r)
A

∣∣∣∣∣∣
SS

,

which is equal for all reactors (r = 1, . . . , 5), whatever the fixed-point.

Similarly, the dynamics of soluble components SS(l)
c (Sc ∈ {SI , SS , SO, SNO, SNH , SND, SALK})

in the l-th layer of the settler are each represented in Eq. (2.4a) by first-order differential
equations of the form Ṡ

S(l)
c = QS(l)(SS(l−1)

c − SS(l)
c ), for l = 1, . . . , 10. QS(l) denotes the influent

flow-rate to the l-th layer. The model assumes a same influent flow-rate for all upper layers,
{QS(l) = (QIN −QW )/V (l)

S }10
l=7, for all lower layers, {QS(l) = (QR +QW )/V (l)

S }5l=1, and for
the feed layer we have QS(6) = (QIN +QR)/V (6)

S . The model also assumes constant volumes
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V
(l)
S = 600 m3. For the relevant entries in the Jacobian ∂f/∂x of the dynamics,

∂Ṡ
S(l)
c

∂S
S(l)
c

∣∣∣∣∣∣
SS

=


(QW −QIN )/V (l)

S

∣∣∣
SS

(l = 7, · · · , 10)
−(QIN +QR)/V (l)

S

∣∣∣
SS

(l = 6)
−(QR +QW )/V (l)

S

∣∣∣
SS

(l = 1, · · · , 5)
,

which is equal for all components, independently of the fixed-point adopted for linearisation.
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8 Wastewater treatment: regulation
In this section, we present the simulation results obtained for the control of the activated sludge
plant for the conventional wastewater treatment task. For the sake of comparison, the open-loop
simulation of the process is presented first. We then consider a model predictive controller that
regulates the process towards a steady-state satisfying effluent quality requirements (see Section
2.3.1). We first consider a predictive control in which the process state is assumed to be known,
then we design an output predictive controller in which the state is estimated. The parameters
for all controllers and estimators are chosen as to provide high performance while respecting
realistic practical constraints. Finally, control performances are evaluated under the short-term
disturbance regimes (dry weather, storm event, and rain event) in terms of the effluent quality
index (EQI) and compliance with the quality limits. For brevity, the discussion focuses on the
storm event influent scenario, considered to be the most challenging disturbance scenario.

8.1 Open-loop: simulation and state-estimation
We assume the open-loop input configuration considered in the conventional benchmark suggested
steady-state SS = (xSS , uSS , wSS , ySS), shown in Table 8.1. This setup refers to the common
layout of an activated sludge plant: reactors A(1) and A(2) are always anoxic, whereas reactors
A(3) to A(5) are aerated. External recirculation is set QR = QSSIN , the influent flow-rate assumed
in the operating point, and QA = 3QR. No external carbon is added to the reactors.

Table 8.1: Activated sludge plant: controllable inputs for the default open-loop operation.

QA QR QW KLa
(1) KLa

(2) KLa
(3) KLa

(4) KLa
(5) Q

(1 5)
EC

55338 18446 385 0 0 240 240 84 0

The simulation results for the effluent-based output variables are shown in Figure 8.1. Under open-
loop conditions, the nitrogen-related concentrations, SS(10)

NH and NS(10)
TOT , frequently violate their

respective quality limits. Specifically, the concentrations of ammonia nitrogen, SS(10)
NH , remain

over the allowed limit for the majority of the simulation period. Conversely, the concentrations
of organic-related matter, XS(10)

SS , BODS(10)
5 and CODS(10), satisfy the quality constraints even

under open-loop operation. This demonstrates that the settler is able to clarify the effluent

Figure 8.1: Open-loop simulation: Effluent-based output variables corresponding to nitrogen components,
top panels, and organic matter, bottom panels. Shaded areas denote the values above the quality limits.
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water of particulate matter, while soluble nitrogen concentrations clearly need to be controlled.
Note that the total suspended solids (XS(10)

SS ) reaches the maximum concentration (30 g m−3)
during the storm events, in t ∈ [8, 12], but remains on violation for a negligible period of time.

8.1.1 State estimation via Moving Horizon Estimation

We now consider the moving horizon estimation over the open-loop operation of the process.
We assume constraints XIN

BA = XIN
P = SINO = SINNO = 0 g m−3 and SINALK = 7 mol HCO−3

m−3, as these disturbance variables are constant whatever the influent scenario (Section 2.2).
For the activated sludge plant and measurement process in Eq. (2.4), the linear models
(A(n), B(n), G(n), C(n)) are computed around each horizon estimates Pn := (x̂n, un, ŵn, ŷn) The
dynamics f∆te(·|θx) in Eq. (5.3) are evaluated from (A(n), B(n), G(n), C(n)) with sampling period
of ∆te = (1/96)d. The estimator assumes a stochastic representation of the plant with process
disturbances wni.i.d∼ N (w̄n, Rw) and measurement noise vni.i.d∼ N (0, Qv), given covariance matrices

Rw = diag[9 · 107 5 50 103 75 103 10 2 9];
Qv = diag[0.001I5 0.006I5 0.01 0.009 0.001 0.03 0.01].

The estimation horizon, Eq. (5.12), is set to 3 hours, or Ne = 12. We define the initial
state uncertainty by assuming xk−Ne+1 ∼ N (x̄k−Ne+1, Qx0) with covariance matrix Qx0 =
diag[0.001(xSS)2] and mean x̄k−Ne+1 ∈ RNx fixed at the state estimate from the previous
iteration, x̄k−Ne+1 = x̂k−Ne+1, or x̄0 = xSS for the first estimation horizon.

The results are shown in Figure 8.2 with respect to the usual effluent measurements of interest.
We focus on the second week period, t ∈ [7, 14], when the storm events occur. This visualization
shows that the MHE estimator is capable to reconstruct approximately the true output of the
plant from the noisy measurements. We note a decrease in the estimation performance only for
CODS(10) at t ∈ [11, 12.5], corresponding to the storm events. Conversely, the remaining output
variables estimates show high accuracy even during such period.

Furthermore, the disturbance and state estimates obtained from the MHE are shown in Figures
8.3 and 8.4, respectively. Again, the visualizations show an overall good performance of the
estimator in reconstructing the true values of the disturbance and state variables. We note that
only the estimation of disturbance variables XIN

I and XIN
BH are of poor quality. Interestingly,

Figure 8.2: Open-loop simulation, t ∈ [7, 14]: Estimation of the effluent-based output variables.
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Figure 8.3: Open-loop, t ∈ [7, 14]: Estimates (black) and true values (grey) for influent flow-rate QIN

and concentrations xA(IN). Concentrations XIN
BA = XIN

P = SIN
O = SIN

NO = 0 and SIN
ALK = 7 are omitted.

Figure 8.4: Open-loop, t ∈ [7, 14]: Estimates (black) and true values (grey) for the chemical concentra-
tions in the first reactor, xA(1). As SA(1)

O ≈ 0, this variable is omitted.

the estimates for concentrations XA(r)
I (r = 1, . . . , 5) are less accurate than the estimates for the

remaining state variables. These variables, corresponding to non-reactive matter in the reactors,
are decoupled from remaining state variables in the reactors, and the estimator is unable to
reconstruct their true value due to the poor performance in reconstructing the influent XIN

I .
Moreover, the concentrations XA(r)

I are amongst the variables which are nonzero entries for the
eigenvectors for which the associated eigenvalues fails a PBH Observability test (Section 7.2).

Finally, we summarise the estimation accuracy using the normalized mean square error (NMSE),
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Table 8.2: MHE: Output, disturbance and state estimation accuracies (JNMSE(y, ŷ), JNMSE(w, ŵ), and
JNMSE(x, x̂), respectively), under the different disturbance regimes.

Dry Weather Storm event Rain event
(y, ŷ) (w, ŵ) (x, x̂) (y, ŷ) (w, ŵ) (x, x̂) (y, ŷ) (w, ŵ) (x, x̂)

JNMSE(·) 1.15e-05 0.0046 0.0001 4.45e-05 0.0050 0.0006 7.83e-05 0.0049 0.0030

JNMSE(y, ŷ) = 1
T

∑T
k=0(‖yk − ŷk‖2/‖yk‖2), measuring, over the T = (14/∆te) simulated mea-

surements, the average deviation of the output estimates, ŷk, against the true outputs, yk. The
metrics JNMSE(w, ŵ) and JNMSE(x, x̂) summarise the accuracy of the disturbance and state
estimates (ŵk and x̂k) against the respective true values (wk and xk). The results, in Table 8.2,
reflect a good performance in estimating the 145 state variables and the 14 disturbance variables
using only the 15 available measurement variables, for all influent scenarios. The disturbance
variables are those estimated with less precision, but still reflecting an overall good performance.

8.2 Model predictive control for conventional treatment
In this section, we present the configuration and results for the predictive control for wastewater
treatment. For the activated sludge plant in Eq. (2.4), the linear models (A(k), B(k), G(k), C(k))
are obtained from the benchmark’s suggested operating point Pk = (xSS , uSS , ŵk, ySS) with
disturbance vector ŵk = w(bk∆tsp

∆tw c∆tw). This correspond to a zero-offset regulator control with
∆tsp = ∆tw, updating the linearised models once influent measurements are available. The
discrete-time dynamics f∆t(·|θx) in Eq. (4.9) are evaluated from (A(k), B(k), G(k), C(k)) with a
sampling period of ∆t = (1/12)d. The control horizon, Eq. (4.8), is set to one day, or N = 12.
We assume weighting matrices Q = C(k)TQyC

(k), with Qy = diag[0.01 · · · 0.01 2 30 2 1 10],
and R = 10−4INu. For the moment, the influent conditions are assumed to be measured once
every ∆tw = (1/2) days. Finally, all simulations consider initial state x(0) = xSS .

The simulation results are shown in Figure 8.5 for the stormy influent conditions. The results
show improved performance with respect to the open-loop operation (see Figure 8.1), despite
the controller being unable to completely avoid violations of the quality constraints. Specifically,
the total number of crossings and time in violation was considerably decreased concerning the
effluent nitrogen forms SS(10)

NH and SS(10)
NO . The control also results in the undesirable effect of

Figure 8.5: Treatment, MPC: Regulation of the effluent-based output variables.
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Figure 8.6: Treatment control, MPC: Influent flow-rate QIN , flow-rates (QA, QR, QW ), oxygen transfer
coefficients KLa

(1 5), and extra carbon flow-rates Q(1 5)
EC , left panels, together with nitrogen forms

S
A(1 5)
NH and SA(1 5)

NO , soluble oxygen SA(1 5)
O , and total suspended solids XS(1 10)

SS , right panels.

having two constraint violations for XS(10)
SS . However, as this variable remains in violation for

only 0.4% of the total period, this is not a concerning disadvantage of the controller.

The control actions and a selection of responses are shown in Figure 8.6. During the first week
(t ∈ [0, 7]), the controller mostly manipulates aeration in the last three reactors, KLa

(1 3), in
order to reject the disturbances. Over the second week (t ∈ [7, 14]), more air is insufflated to the
anoxic reactors A(1, 2), by increasing KLa

(1,2). Despite dissolved oxygen in the second reactor,
S
A(2)
O , remaining mostly at low levels, this action leads to an increase in oxygen content in the

first reactor, SA(1)
O . Moreover, the control reacts to the storm event occurring in t ∈ [10, 12] by

decreasing the wastage flow-rate, QW . This results in an accumulation of suspended solids in the
bottom layer of the settler, XS(1)

SS , such that more sludge can be provided to the first reactor by
external recirculation. This action compensates the sudden decrease in nitrogen concentrations
S
A(r)
NO (r = 1, . . . , 5) by favouring the nitrification process in all reactors.

Finally, the overall performance of the treatment control is evaluated in terms of the effluent
quality index (EQI, in kg Pollution Units), Figure 8.7. We compute this metric as a function of
time by considering the term inside the integral in Eq. (2.7),

EQI(t) = QE(t)
(
2XS(10)

SS (t) + CODS(10)(t) + 2BODS(10)
5 (t) + 30NS(10)

TKN (t) + 10SS(10)
NO (t)

)
,

given effluent flow-rate QE = QIN − QW and Kjeldahl nitrogen N
S(10)
TKN = N

S(10)
TOT − S

S(10)
NO .
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Figure 8.7: Treatment, MPC: Effluent quality index (EQI) under open-loop and closed-loop operation.

Moreover, the quality improvement is computed by the ratio (EQIOP − EQIMPC)/EQIOP , with
EQIOP and EQIMPC the effluent quality under the open-loop and MPC operation, respectively.
The results demonstrate that the predictive controller was able to improve the quality of the water
when compared to the open-loop operation. Specifically, the average EQI value decreases from
7233 kg PU d−1, under open-loop operation, to 6355 kg PU d−1, under closed-loop operation.
The results also show an average increase of 11.89% in the treated water quality.

8.2.1 Output model predictive control

We now present the simulation results obtained by the output predictive control of the activated
sludge plant, when the process state is not assumed to be known. For the task, we design an
output model predictive control based on a moving horizon estimator that estimates the state
and disturbance variables under the model predictive control operation (Section 6). We consider
the same estimator configuration setup from the MHE described in Section 8.1.

The results are shown in Figure 8.8 with respect to the usual effluent measurements of interest.
As expected, the moving horizon estimator is able to provide accurate estimates for the model
predictive controller. In this case, the overall performance of the control shows an improvement
over the previous predictive controller. This reflects the advantageous feature of output model
predictive controllers of having an estimate of the disturbance-vector available at each control

Figure 8.8: Treatment, Output-MPC: Estimation and regulation of the effluent-based output variables.
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Figure 8.9: Treatment, Output-MPC: Effluent quality index (EQI) under closed-loop operations.

horizon. As the high accuracy of the state estimates makes this setup comparable to assuming
knowledge of the states, the estimation of disturbances allows for a better control strategy.

Moreover, we compare the performances of the Output-MPC controller and the MPC controller
in terms of the effluent quality index (EQI), Figure 8.9. The results show a slight improvement
over the previous controller, as expected. This increase in effluent quality is more noticeable in
the second week period (t ∈ [7, 14]), especially during the storm events. In summary, the average
EQI value decreases from 6355 kg PU d−1, under the MPC operation, to 6028.4 kg PU d−1,
under the Output-MPC operation, with an average 5.14% increase in the effluent water quality.

8.2.2 Summary and results comparison

The control performances are summarised in Table 8.3 under the different short-term disturbance
regimes. The results show an overall improvement in the wastewater treatment performance
under closed-loop, for all scenarios. This improvement is reflected in the reduction of EQI and a
significant decrease of the percentage time in violation of quality limits, especially for SS(10)

NH .
The output model predictive controllers display the best performance. Specifically, the treated
water quality is increased more than 13% under its operation, for all disturbance scenarios.

Table 8.3: Results: Control performances in terms of effluent quality index (EQI, kg PU d−1), number
of quality limit crossings and percentage of time in violation (#Crossings and %Violation, respectively,
for SS(10)

NH and NS(10)
T OT ), operation cost index (OCI), and energy costs (PE, AE and CAE).

Dry weather Storm event Rain event
OL MPC O-MPC OL MPC O-MPC OL MPC O-MPC

EQI 6576.6 5833.8 5625.0 7233.0 6355.0 6028.4 7694.2 6929.9 6582.5
#Crossings

(SNH) 14 14 17 14 15 17 14 15 22
%Violation

(SNH) 61 17 15 62 19 18 62 19 26
#Crossings
(NT OT ) 9 5 1 8 4 2 7 3 2

%Violation
(NT OT ) 7 2 0 7 2 1 5 1 1

OCI 3729.6 7958.0 8994.4 3729.6 8154.4 10749.5 3729.6 7844.1 12236.9
PE 388.2 388.2 392.7 388.2 387.6 394.6 388.2 386.8 397.5
AE 3341.4 3622.3 4053.4 3341.4 3695.4 4363.3 3341.4 3673.8 4769.5
CAE 0.0 1315.8 1516.1 0.0 1357.1 1997.2 0.0 1261.1 2356.7
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Moreover, we summarise the operational cost index (OCI, Section 2.3.2) associated with the
control actions obtained for each controller, over each scenario. The results (also in Table 8.3)
show that the increase in performance is met with an increase in the energetic cost indices,
highlighting the efficacy-efficiency trade-off. Despite the largest costs being associated with
aeration energy, the carbon addition energy costs are mainly responsible for the significant
increases in OCI. Conversely, the pumping energy costs remain low even in closed-loop conditions.
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9 Wastewater reuse: set-point tracking
In this section, we present the simulation results obtained for the control of the activated sludge
plant when the process is required to produce reclaimed water according to a specific reference
trajectory. We first demonstrate the zero-offset control over a toy reference trajectory, and
then we show the results when the plant is requested to produce effluent nitrogen for optimal
crop growth. In all cases, we consider first a predictive control in which the process state is
assumed to be known, then we consider the output predictive control strategy in which the state
is estimated. We present the configuration settings common to both controllers, then we discuss
the specific parameters and results. These parameters are chosen to provide high performance
while respecting realistic operational constraints. The performances are evaluated under constant
and dynamic disturbance regimes in terms of tracking accuracy and operational costs.

9.1 Case study: toy effluent reference trajectory
In this section, we present the simulation results obtained by the predictive control of the
activated sludge plant when the process is requested to produce water of specific quality. We
consider a toy reference trajectory for effluent total nitrogen, NS(10)

TOT , defined by the function

ỹsp(t) = 22χ[0,∆tsp) + 18χ[∆tsp,2∆tsp) + 28χ[2∆tsp,3∆tsp) + 20χ[3∆tsp,4∆tsp) + 30χ[4∆tsp,5∆tsp),

in which χ[0,∆tsp) is the indicator function χA(t) = 1, if t ∈ A, and χA(t) = 0, if t /∈ A.

9.1.1 Model predictive control for set-point tracking

This set-point tracking corresponds to considering H = [0 · · · 0 1] in Eq. (4.17). The sampling
period of the reference is assumed ∆tsp = 2.8 days. For the activated sludge plant in Eq. (2.4),
the linear models

(
A(m), B(m), G(m), C(m)) around Pm := (xspm , uspm , wspm , yspm ) are computed by

solving the optimisation in Eq. (4.17) once every 2.8 days, when set-points ỹspm = ỹsp((m+1)∆tsp)
are available. We select weighting matrices Wy = 10 and Wu = 0. The dynamics f∆t(·|θx) in
Eq. (4.9) are evaluated from

(
A(m), B(m), G(m), C(m)) with a sampling period ∆t = (1/12)d.

The control horizon, Eq. (4.3), is set to be 1 day, or N = 12. We assume weighting matrices
Q = C(m)TQyC

(m) and R = 10−4, with Qy = diag[0.01 · · · 0.01 20]. For the moment, the
influent conditions are assumed to be measured once every ∆tw = (1/2) days. The initial state
is set x(0) = xSS , the usual benchmark steady-state. This configuration is common under both
dynamic and constant disturbances. For the latter, the influent conditions are set w(t) = wSS .

The simulation results are shown in Figure 9.1 for constant and stormy influent conditions.
In both cases, the controller was capable to drive the process towards the desired set-points.
Under constant influent conditions, the predictive control perfectly stabilizes the plant around
each reference value, with a settling time of 0.75d in the slowest transition. Under dynamic
disturbances, the controller keeps the process close to the desired states despite complete
disturbance rejection being not achieved. Interestingly, the zero-offset control is able to produce
the desired output even when a set-point change occurs during a storm event (t = 11.2d).

Figure 9.1: Reuse, MPC: Reference tracking of effluent total nitrogen, NS(10)
T OT .
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Figure 9.2: Reuse, MPC: Influent flow-rate QIN , flow-rates (QA, QR, QW ), oxygen transfer coefficients
KLa

(1 5), and extra carbon flow-rates Q(1 5)
EC , left panels, together with nitrogen forms SA(1 5)

NH and
S

A(1 5)
NO , soluble oxygen SA(1 5)

O , and total suspended solids XS(1 10)
SS , right panels.

The control actions and a selection of responses are shown in Figure 9.2. The controller serves the
required effluent total nitrogen, NS(10)

TOT , mainly by producing SS(10)
NO nitrogen through favouring

nitrification in the aerobic section. This is achieved by manipulating KLa
3 5 to increase (or

decrease) the oxygen used in the production of SA(3 5)
NO in reactors A(3, 4, 5). In the settler, the

changes in the feed concentration SA(5)
NO are reflected in the effluent SS(10)

NO ; and consequently
on N

S(10)
TOT . Moreover, we note how KLa

A(1,2) is manipulated in anoxic reactors A(1, 2) to
increase the available oxygen whenever the production of SS(10)

NO is insufficient due to the dynamic
disturbances. This effect is especially observed during the last storm event, at t ∈ [10, 12].

9.1.2 Output model predictive control

We now present the simulation results obtained by the zero-offset output predictive control of
the activated sludge plant, when the process state is not assumed to be known. We consider
the same estimator configuration setup from the MHE described in Section 8.2. Namely, we
assume the measurement process with period of ∆te = (1/96)d = 15min between observations.
The estimation horizon, Eq. (5.12), is set to 3 hours, or Ne = 12. The estimator assumes a
stochastic representation of the plant, Eq. (5.3), with process disturbances wni.i.d∼ N (w̄n, Rw)
and measurement noise vni.i.d∼ N (0, Qv), given covariance matrices

Rw = diag[9 · 107 5 50 103 75 103 10 2 9];
Qv = diag[0.001I5 0.006I5 0.01 0.009 0.001 0.03 0.01].
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Figure 9.3: Comparison, Output-MPC: Estimation and tracking of effluent total nitrogen, NS(10)
T OT .

We define the initial state uncertainty by assuming xk−Ne+1 ∼ N (x̄k−Ne+1, Qx0) with covariance
matrix Qx0 = diag(0.01xSS)2, while the mean x̄k−Ne+1 ∈ RNx is fixed at the state estimate
from the previous iteration, or x̄0 = xSS for the first estimation horizon. In the Output MPC
strategy, each k-th control horizon, Eq. 6.3, considers initial state, xk = x̂k, and fixed disturbance
wn = ŵk (n = k, . . . , k +N), with (x̂k, ŵk) the estimates from the moving horizon estimation.

The results are shown in Figure 9.3 with respect to effluent total nitrogen, NS(10)
TOT , in comparison

with the previous MPC result. The moving horizon estimator is able to provide accurate
estimates for the model predictive controller, and the controller is able to reach the desired
set-points. During most of the simulation, the tracking accuracy of the Output-MPC shows an
improvement over the MPC as the effluent nitrogen produced is noticeably closer to the reference.
Again, we attribute this to the benefit of having an estimate of the disturbance-vector available
at each control horizon. During the storm events within t ∈ [8, 12], however, the estimator
performance deteriorates and the controller reacts poorly to the disturbances.

9.1.3 Summary and results comparison

The control performances are summarised in Table 9.1 under the different short-term disturbance
regimes (dry weather, storm event, and rain event). The results show that the tracking accuracy
is satisfactory, for all scenarios. Conversely from the results in Chapter 8, the Output-MPC
strategy has the best overall performance only for the rain event scenario, despite having similar
performance as the MPC in the remaining cases. Moreover, we summarise the operational
cost index (OCI, Section 2.3.2) associated with the control actions obtained for each controller,
over each scenario. The results (also in Table 9.1) show that this reference tracking task has
operational costs similar to those obtained for the optimal wastewater treatment control. Again,
despite the largest costs being associated with aeration energy, carbon addition energy costs
dominate the OCI values. The pumping energy costs are generally low also for this application.

Table 9.1: Results: Tracking accuracy in terms of normalised mean squared errors (NMSE), together
with operation cost index (OCI) and energy costs (PE, AE and CAE).

Dry weather Storm event Rain event
MPC O-MPC MPC O-MPC MPC O-MPC

JNMSE(ỹ, ỹsp) 0.00885 0.01012 0.01480 0.02356 0.01098 0.01094

OCI 7159.5 10499.7 7290.9 10868.6 7189.5 10539.4
PE 389.0 390.3 388.2 390.8 387.5 390.4
AE 5100.2 5882.6 5208.1 6053.9 5193.7 6430.7
CAE 556.8 1408.9 564.8 1474.6 536.1 1239.4
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9.2 Case study: supply nitrogen for optimal crop growth
In this section, we present the simulation results obtained by the predictive control of the
activated sludge plant when the process is requested to produce nitrogen for optimal crop growth
(Section 2.3.2). We illustrate the results with two tuning configurations of the controller, one
favouring the manipulation of NO−2 +NO−3 nitrogen (SNO) and another one favouring NH+

4 +NH3
nitrogen (SNH). We present the configuration settings that are common to both controllers,
then we discuss the specific parameters and results separately.

9.2.1 Model predictive control for set-point tracking

We consider reference trajectories for effluent total nitrogen, NS(10)
TOT , the nitrogen concentration

of the irrigation water. This corresponds to considering H = [0 · · · 1] in Eq. (4.17). The
sampling period of the reference is ∆tsp = 7d. For the activated sludge plant in Eq. (2.4), the
linear models

(
A(m), B(m), G(m), C(m)) around Pm := (xspm , uspm , wspm , yspm ) are computed by solving

the optimisation in Eq. (4.17) once a week, when set-points ỹspk = ỹsp((m+ 1)∆tsp) are available.
The dynamics f∆t(·|θx) in Eq. (4.9) are evaluated from

(
A(m), B(m), G(m), C(m)) with sampling

period ∆t = (1/3)d. The control horizon, Eq. (4.3), is set to be 7 days, or N = 21. We select
weighting matrices Q = C(m)TC(m) and R = diag[10−4 0.01 0.01 10−3I5 104I5]. The influent
conditions are assumed to be measured once every ∆tw = 1d. We treat set-points ỹsp(t) = 0 as
corresponding to interrupted irrigation and control the plant for conventional treatment with
ỹspm = Hg(xSS) whenever ỹspm = 0. This setup is common to all cases, under both dynamic and
constant influent. For the latter, we choose w(t) = wSS . All simulations consider x(0) = xSS .

Case I: NTOT control favouring NO−2 +NO−3 nitrogen

To design a controller that favours the production of NO−2 +NO−3 nitrogen when asked to track
ỹsp(t) = N sp

TOT (t), we set the steady-state optimisation parameters Wy = 100 and Wu = 0. The
results (Figure 9.4) show that the controller is capable to drive the plant towards the reference
values under constant influent conditions. However, performances deteriorate when the plant
is subject to dynamic influent conditions, specially when asked to track yspm ≥ 40 g N m−3.
Specifically, the control is neither able to reject disturbances causing sudden peaks in the effluent
concentrations, nor produce enough nitrogen when the influent content is insufficient.

Figure 9.4: Case I, MPC: Reference tracking of effluent total nitrogen, NS(10)
T OT .
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Figure 9.5: Case I, t ∈ [49, 112]: Influent flow-rate QIN , flow-rates (QA, QR, QW ), oxygen transfer
coefficients KLa

(1 5), and extra carbon flow-rates Q(1 5)
EC , left panels, together with nitrogen forms

S
A(1 5)
NH and SA(1 5)

NO , soluble oxygen SA(1 5)
O , and total suspended solids XS(1 10)

SS , right panels.

The control actions and a selection of responses are depicted in Figure 9.5 when the controller
serves the set-point changes at t = {56, 91}d in Scenario I: The requested concentration changes
are from 50 g N m−3 to 14.05 g N m−3 and back to 50 g N m−3.

• In the first set-point change (t = 56d), the controller decreases NS(10)
TOT mainly by producing

S
S(10)
NO nitrogen by explicitly acting on the denitrification-nitrification process: This solution

is achieved by first reducing aeration in the first reactors A(1,2) through KLa
(1,2), then,

as the concentrations SA(1,2)
NO decrease noticeably, these concentrations are increased in

the last reactors A(3 5) by increasing aeration, through KLa
(3 5). As SA(5)

NO is the feed
concentration to the settler, these changes are reflected at SA(1 10)

NO ; and thus on NS(10)
TOT .

Moreover, wastage flow-rate QW is increased to reduce the accumulation of suspended
solids XS(1 10)

SS throughout the settler layers.

• In the second set-point change (t = 91d), dissolved oxygen is added to all reactors A(1 5)

by increasing KLa
(1 5). As a result, nitrification is implemented throughout the entire

process. Again, this effect is reflected at concentrations SS(1 10)
NO . As oxygen saturates,

however, not enough nitrogen can be converted to reach the set-point. The controller thus
attempts to complement the effluent total nitrogen using nitrogen entrapped in particulate
matter. Wastage flow-rate QW is decreased in such way that suspended solids XS(1 10)

SS

accumulates in all settler layers S(1 10). Thus, NS(10)
TOT increases due to nitrogen taken from

effluent concentrations of biomass (XS(10)
BH , X

S(10)
BA ) and organic matter (XS(10)

I , X
S(10)
P ).
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Case II: NTOT control favouring NH+
4 +NH3 nitrogen

To favour NH+
4 +NH3 nitrogen when asked to track ỹsp(t) = N sp

TOT (t), we consider a controller that
is based on linearisations (A(m), B(m), G(m), C(m)) around points Pm := (xspm , uspm , wspm , yspm ) that
solve problem Eq. (4.17) with weighting matrices configured to be Wy = 100 and Wu = 0.01INu .

The results, Fig. 9.6, show that also this controller can drive the plant towards the set-points
when operated against constant influent conditions. More importantly, the overall performance
with dynamic influent conditions is improved. However, this control is not able to drive the plant
back to the wastewater treatment operation corresponding to set-points ỹspm = 14.05 g N m−3.

Figure 9.6: Case II, MPC: Reference tracking of effluent total nitrogen, NS(10)
T OT .

The control actions and a selection of responses are depicted in Figure 9.7 when the controller
serves the set-point changes at t = {56, 91}d in Scenario I. The requested concentration changes
are from 50 g N m−3 to 14.05 g N m−3 and back to 50 g N m−3.

• In the first change (t = 56d), the controller attempts to decrease the effluent NS(10)
TOT mostly

by converting nitrogen from SNH back to SNO through nitrification: Air is added to
all reactors, specially for the conventional aerobic section A(3 5), by directly increasing
KLa

(1 5). As the concentrations of SA(1 5)
NO are virtually reduced to zero during the initial

interval, not enough nitrogen can be converted in time to reach the set-point. Moreover,
wastage flow-rate, QW , is still increased over same interval to reduce the total suspended
solids, XS(l)

SS (l = 1, . . . , 10), accumulated in the settler.

• In the second change (t = 91d), the controller attempts to increase the effluent NS(10)
TOT

by producing SS(10)
NH mostly by interrupting the nitrification–denitrification process: The

controls are immediately shut down, including recirculation flow-rates. All reactors
are set under anoxic conditions by reducing aeration with KLa

(r) (r = 1, . . . , 5). Thus,
influent NH+

4 +NH3 nitrogen, SINNH , is not consumed by autotrophic bacteria throughout the
reactors, being then emitted in the effluent SS(10)

NH . As in Case I, the controller complements
the remaining NS(10)

TOT using nitrogen entrapped in particulate matter whenever influent
ammonia is insufficient. Flow-rate QW is thus decreased to allow X

S(l)
SS to accumulate.
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Figure 9.7: Case II, t ∈ [49, 112]: Influent flow-rate QIN , flow-rates (QA, QR, QW ), oxygen transfer
coefficients KLa

(1 5), and extra carbon flow-rates Q(1 5)
EC , left panels, together with nitrogen forms

S
A(1 5)
NH and SA(1 5)

NO , soluble oxygen SA(1 5)
O , and total suspended solids XS(1 10)

SS , right panels.

This control strategy has one undesirable effect: When recirculation is not applied, chemical
concentrations which are absent in the influent wastewater (namely, XIN

BA, XIN
P , SINO , and SINNO),

are removed from the process through the effluent water. As a consequence, the denitrification-
nitrification process can never be re-implemented without “restarting” the plant by explicitly
adding NO−2 +NO−3 nitrogen (SNO) and active autotrophic biomass (XBA) to the reactors. This
is due to the fact that the dynamics of both variables are interdependent (see Appendix A.1).

9.2.2 Case I and Case II: Comparison

We first discuss the effects of disturbances on the control with respect to Scenario I, Figure 9.8.
We condense the disturbances as influent total nitrogen, N IN

TOT , defined as

N IN
TOT = SINNO + SINNH + SINND +XIN

ND + iXB(XIN
BH +XIN

BA) + iXP (XIN
P +XIN

I ).

We then summarise these effects in terms of average nitrogen removal efficiency,

ηNTOT (t0, tf ) = 1
tf − t0

∫ tf

t0

(
1− QE(t)NS(10)

TOT (t)
QIN (t)N IN

TOT (t)
)
dt,

for a specific time interval T = tf − t0, with effluent flow-rate QE = QIN −QW .

• Case I: The average ηNTOT (56, 91) = 0.60 indicates that 60% of influent nitrogen is removed
in t ∈ [56, 91]. Conversely, ηNTOT (49, 56) = 0.06 shows that roughly 94% of the influent
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Figure 9.8: Comparison, t ∈ [49, 112]: Nitrogen removal shown by the difference between influent N IN
T OT

and effluent N IN
T OT total nitrogen for the predictive control in Case I (left) and Case II (right).

total nitrogen is still preserved in the effluent during t ∈ [49, 56]. ηNTOT (91, 112) = 0.18 for
t ∈ [91, 112] indicates that 82% of influent total nitrogen is still preserved in the effluent.

• Case II: The average ηNTOT (56, 91) = 0.10 for t ∈ [56, 91] indicates that only 10% of the
influent nitrogen is removed during this time interval. Conversely, averages ηNTOT (49, 56) =
0.04 for t ∈ [49, 56] and ηNTOT (91, 112) = 0.03 for t ∈ [91, 112] indicates respectively that
96% and 97% of influent total nitrogen is still preserved in the effluent during these interval.

We evaluate the controllers overall performance by the usual normalised mean squared error
(NMSE) metric (Section 2.3.2). The results (Table 9.2) show generally good performance for the
control simulations under constant influent conditions. We note that Scenario I as an exception,
as accuracy lowers during set-point changes in both cases. Moreover, the results show that
performance worsens with dynamic disturbances, being Case II controllers generally less affected.

Table 9.2: Results: Tracking accuracy, JNMSE(ỹ, ỹsp), with respect to each reference trajectories.

Case I Case II
w(t) constant w(t) dynamic w(t) constant w(t) dynamic

Scenario I 0.0418 0.1619 1.1360 0.5408
Scenario II 0.0903 0.1806 0.0521 0.1085
Scenario III 0.0147 0.1911 0.0057 0.1469

Finally, we evaluate the overall cost index, (OCI, Section 2.3.2), considering the predictive
control operating under dynamic influent conditions. As expected, the results (Table 9.3) show
that a solution favouring nitrogen in the form of SNH costs significantly less than favouring
SNO. Despite the pumping costs being generally low in all cases, aeration and carbon addition
costs are significantly smaller in Case II.

Table 9.3: Results: Energy costs (PE, AE, and CAE) and operational cost indices (OCI, in kWh d−1).

Case I Case II
PE AE CAE OCI PE AE CAE OCI

Scenario I 409.3 7858.8 793.2 10647.9 101.2 1459.1 1525.8 6137.7
Scenario II 426.7 8389.5 513.7 10357.4 48.2 535.5 2031.7 6678.7
Scenario III 404.7 7330.7 499.7 9234.5 158.0 1525.2 842.0 4209.1
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9.2.3 Output model predictive control

We now present the simulation results obtained by the zero-offset output predictive control of
the activated sludge plant, when the process state is not assumed to be known. For the task, we
design an output model predictive control based on a moving horizon estimator that estimates
the state and disturbance variables under the model predictive control operation (Chapter 6).
In this case, we assume that the influent flow-rate, QIN , is known. A measurement process with
period of ∆te = (1/96)d = 15min between observations is considered. The estimation horizon,
Eq. (5.12), is set to 3 hours, or Ne = 12. The estimator assumes a stochastic representation
of the plant, Eq. (5.3), with process disturbances wni.i.d∼ N (w̄n, Rw) and measurement noise
vn
i.i.d∼ N (0, Qv), given covariance matrices

Rw = diag[0.2 3 0.1 0.5 0.1 0.6 0.075 0.125];
Qv = diag[0.001I5 0.006I5 0.01 0.009 0.001 0.03 0.01].

We define the initial state uncertainty by assuming xk−Ne+1 ∼ N (x̄k−Ne+1, Qx0) with covariance
matrix is set Qx0 = diag(0.01xSS)2, while the mean x̄k−Ne ∈ RNx is fixed at the state estimate
from the previous iteration, or x̄0 = xSS for the first estimation horizon. In the Output MPC
strategy, each k-th control horizon, Eq. 4.8, consider initial state, xk = x̂k, and fixed disturbance
wn = ŵk (n = k, . . . , k+N), with (x̂k, ŵk) the estimates from the moving horizon estimation.

Figure 9.9: Comparison, Output-MPC: Estimation and tracking of effluent total nitrogen, NS(10)
T OT .

The results are shown in Figure 9.9 with respect to effluent total nitrogen, NS(10)
TOT , in comparison

with the previous MPC result. Again, the moving horizon estimator is able to provide accurate
estimates and the output predictive controller is also able to partially reach the desired set-points.
Moreover, the effluent total nitrogen produced by the Output MPC is seemingly closer to the
reference for the time periods in which the MPC controller was unable to produce enough
nitrogen. Again, this is due to the availability of disturbance estimates.

The control performances are summarised in Table 9.4 under the different reference scenarios. The
results show that the output predictive controller has similar tracking accuracy and operational
cost index when compared to the predictive controller when the state and disturbances were
measured. Specifically, the pumping and aeration energies (PE and AE) are lower for the Output
MPC operation, while the carbon addition energy (CAE) are higher for this controller. Again,
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despite the largest costs being associated with aeration energy, carbon addition energy costs
dominate the OCI values. The pumping energy costs are generally low also for this application.

Table 9.4: Results: Tracking accuracy in terms of normalised mean squared errors (NMSE), together
with operation cost index (OCI) and energy costs (PE, AE and CAE).

Scenario I Scenario II Scenario III
MPC O-MPC MPC O-MPC MPC O-MPC

JNMSE(ỹ, ỹsp) 0.1619 0.1691 0.1806 0.1876 0.1911 0.1241

OCI 10647.9 10936.4 10357.4 10509.8 9234.5 8994.9
PE 409.3 405.2 426.7 424.5 404.7 403.9
AE 7858.8 7338.5 8389.5 7578.7 7330.7 6557.1
CAE 793.2 1064.2 513.7 835.5 499.7 677.9



Part IV

Conclusion





71
10 Concluding remarks
This work has presented an analysis of the dynamical properties of activated sludge plants and
the simulation results for the predictive control operating these plants for wastewater treatment
and water reuse tasks. Regarding the dynamical analysis (Chapter 7), the results show that:

• BSM1-like plants are controllable but not observable in the structural sense.

• With respect to the default linearisation, BSM1-plants are stable but uncontrollable and
unobservable in the conventional sense. However, a large portion of the state-space is still
controllable and observable. Due to stability, the plant is both stabilizable and detectable.

• Controlling and observing BSM1-plants are energy demanding tasks even for minimal
realisations of the conventional linearisation suggested by the benchmark.

• The controllability and observability energies are comprised in a small number of state-space
directions. Moreover, the efforts required to control or reconstruct the entire state-space is
the lowest if we were to observe and actuate directly on organic matter in the reactors.

According to the simulation results for the wastewater treatment control (Chapter 8), the
predictive controller is able to improve the effluent wastewater quality, mainly by reducing the
time in violation of the quality requirements of nitrogen concentrations. However, the closed-loop
operation leads to a significantly higher operational cost index. A moving horizon estimation
under the open-loop operation of the plant is also discussed. The results show that it is possible
to estimate the trajectories of the 145 state and 14 disturbance variables through only 15 noisy
measurement variables. Finally, the results also show that the output model predictive control
strategy performs better than the strategy of assuming knowledge about the states.

The simulation results in Chapter 9 concerns the zero-offset predictive control that operates the
plant to produce nitrogen according to specific reference trajectories. The results show that
the controller is capable to drive the plant to the desired set-points from the piecewise linear
toy reference trajectory of Section 9.1, under both constant and dynamic influent conditions.
Regarding the control task of supplying nitrogen for optimal crop growth (9.2), the results show
that, also for this difficult reference, the zero-offset controller is able to drive the plant to the
desired set-points when influent conditions are constant. However, performance deteriorates
when the plant is subject to dynamic influent conditions, as the controller is not capable to
perfectly reject disturbances in general. Moreover, the experiments show that two distinct
control strategies exist according to two tuning configurations of the controller:

• When the steady-inputs used for linearisations are let free, the resulting control strategy
favours the manipulation of NO−2 +NO−3 nitrogen. Control actions are applied in order
to favour the nitrification process within the reactors, and also to allow accumulation of
suspended solids in the settler to supplement the effluent nitrogen using organic matter.

• When the steady-inputs used for linearisations are minimized, the resulting control strategy
favours the manipulation of NH+

4 +NH3 nitrogen. Control actions are shut down in order
to allow the influent ammonia to be emitted in the effluent, and also to allow accumulation
of suspended solids in the settler to supplement the effluent nitrogen using organic matter.
The results also show that this strategy has the undesirable effect of removing all nitrates
and autotrophic bacteria from the process, such that the controller is unable to return to
conventional wastewater treatment operation.
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A Model equations and parameters
In this appendix, the state-space model equations, alongside model parameters and comple-
mentary information, are provided for the systems discussed in this work. The explicit state
equations of the Benchmark Simulation Model No. 1 are presented, then the default model
parameters and steady-state operating point are given. Finally, the description of the crop
growth model used to generate optimal nitrogen trajectories is discussed, together with the
optimal control problem from which these trajectories are computed.

A.1 Benchmark Model No. 1 (BSM1)
We start by describing the dynamics of concentrations within each r-th reactor, represented by
the set of state variables xA(r) given in Section 2.1. For any component ZA(r) ∈ xA(r),

ŻA(r) =


Q(r)

V A(r)

[
ZA(r−1) − ZA(r)

]
−

Q
(r)
EC

V A(r)Z
A(r) +RZA(r) (r = 2, · · · , 5)

1
V A(1)

[
QINZ

A(IN) +QAZ
A(5) +QRZ

S(1)
]
−
Q(1) +Q

(1)
EC

V A(1) ZA(1) +RZA(1) (r = 1)
,

(A.1)
where Q(r) = (QIN +QA +QR +∑r−1

j=1 Q
(j)
EC), for all r = 1, · · · , 5, and RZA(r) is the contribution

from process reactions associated to component ZA(r), as presented in Henze et al. (2000).
Whenever ZA(r) = S

A(r)
O we add the term KLa

(r)[SsatO − SA(r)
O ] for both cases in (A.1). When

ZA(r) = S
A(r)
S we add (Q(r)

EC/V
A(r))SECS , for both cases in (A.1).

Specifically, the dynamics the concentrations in reactors r = 2, · · · , 5 are given as

Ṡ
A(r)
I =

Q(r)

V A(r)

[
S

A(r−1)
I − SA(r)
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Q
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The dynamics for suspended solids in each l-th settler’s layer, XS(l)
SS , are described by
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Moreover, the time evolution of any soluble matter ṠS(l)
(·) within each l-th layer is

Ṡ
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(·) =
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(A.15)

withXf = 0.75
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)
, Qf = (QIN+QR), Qu = (QR+QW ),

and Qe = (QIN −QW ). The downward and upward flux of solids are respectively given by
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in which
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. (A.18)

To compute Jacobian linearisations, the vector-valued functions f(·) and g(·) must be differen-
tiable. Due to the discontinuous functions in the model of the settler, this is not true for the
formulation above. A smooth approximation of the original model was obtained by replacing
the many terms corresponding to minimum and maximum functions between two terms with a
log-sum-exp or softmax function, whereas an hyperbolic tangent function was used for approxi-
mating conditional statements. Specifically, we rewrite the condition for the downward flux of
solids, Jcla(·) from Eq. (A.17), as

Jcla(·) = ϕ(XS(l−1)
SS ) min
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with ϕ(XS(l−1)
SS ) = 1 when XS(l−1)

SS −Xt > 0 and ϕ(XS(l−1)
SS ) = 0 otherwise. We approximate

the step function ϕ(XS(l−1)
SS ) with an hyperbolic tangent function

ϕ(XS(l−1)
SS ) ≈ 0.5 + 0.5 tanh

(
50
(
X
S(l−1)
SS −Xt

))
.

The differential equations depend on the set of stoichiometric, kinetic and general parameters
described at Table A.1. Finally, the conventional operation of the plant corresponding to the
steady-state point SS := (xSS , uSS , wSS , ySS) is presented at Table A.2.

The control variables of this process are constrained by operational limits. Specifically, the
recirculation flow-rates are constrained as QA ≤ 5QSSIN = 92230 m3 d−1 and QR ≤ 3QSSIN = 36892
m3 d−1, and the wastage flow-rate is limited by QW ≤ 0.1QSSIN = 1844.6 m3 d−1. Moreover, the
oxygen transfer coefficient and external carbon flow-rate are constrained by KLa

(r) ≤ 360 d−1

and Q(r)
EC ≤ 5 m3 d−1, respectively, in all reactors (r = 1, . . . , 5).
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Table A.1: Benchmark Model No. 1: Model constant parameters.

Stoichiometric parameter Value Units

YA Autotrophic yield 0.24 g XBA COD formed · (g N oxidised)−1

YH Heterotrophic yield 0.67 g XBH COD formed · (g COD utilised)−1

fP Fraction of biomass to particulate products 0.08 g XP COD formed · (g XBH decayed)−1

iXB Fraction nitrogen in biomass 0.08 g N (g COD)−1 in biomass
iXP Fraction nitrogen in particulate products 0.06 g N (g COD)−1 in XP

Kinetic parameter Value Units

µH Maximum heterotrophic growth rate 4.00 d−1

KS Half-saturation (heterotrophic growth) 10.0 g COD m−3

KOH Half-saturation (heterotrophic oxygen) 0.20 g O2 m−3

KNO Half-saturation (nitrate) 0.50 g NO3-N m−3

bH Heterotrophic decay rate 0.30 d−1

νg Anoxic growth rate correction factor 0.80 dimensionless
νh Anoxic hydrolysis rate correction factor 0.80 dimensionless
kh Maximum specific hydrolysis rate 3.00 g XS (g XBH COD d)−1

KX Half-saturation (hydrolysis) 0.10 g XS (g XBH COD)−1

µA Maximum autotrophic growth rate 0.50 d−1

KNH Half-saturation (autotrophic growth) 1.00 g NH4-N m−3

bA Autotrophic decay rate 0.05 d−1

KOA Half-saturation (autotrophic oxygen) 0.40 g O2 m−3

ka Ammonification rate 0.05 m3 (g COD d)−1

Secondary settler parameter Value Units

vmax0 Maximum settling velocity 250.0 m d−1

v0 Maximum Vesilind settling velocity 474.0 m d−1

rh Hindered zone settling parameter 0.000576 m3 (g SS)−1

rp Flocculant zone settling parameter 0.00286 m3 (g SS)−1

fns Non-settleable fraction 0.00228 dimensionless

General parameter Value Units

V A(1 2) Reactor volume (anoxic section) 1000 m3

V A(3 5) Reactor volume (aerobic section) 1333 m3

V S(l) Settler layer volume 600 m3

hS(l) Settler layer height 0.4 m
SECS External carbon source concentration 4 · 105 g COD m−3

SsatO Oxygen saturation concentration 8.0 g O2 m−3

Xt Settling threshold concentration 3000 g m−3
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Table A.2: Benchmark Model No. 1: Steady-state point SS := (xSS , uSS , wSS , ySS).

Influent Reactor
IN A(1) A(2) A(3) A(4) A(5) Units

SI 30 30 30 30 30 30 g COD m−3

SS 69.5 2.81 1.46 1.15 0.995 0.889 g COD m−3

XI 51.2 1149 1149 1149 1149 1149 g COD m−3

XS 202.32 82.1 76.4 64.9 55.7 49.3 g COD m−3

XBH 28.17 2552 2553 2557 2559 2559 g COD m−3

XBA 0 148 148 149 150 150 g COD m−3

XP 0 449 450 450 451 452 g COD m−3

SO 0 0.0043 6.31E-5 1.72 2.43 0.491 g O2 m−3

SNO 0 5.37 3.66 6.54 9.30 10.4 g N m−3

SNH 31.56 7.92 8.34 5.55 2.97 1.73 g N m−3

SND 6.95 1.22 0.882 0.829 0.767 0.688 g N m−3

XND 10.59 5.28 5.03 4.39 3.88 3.53 g N m−3

SALK 7 4.93 5.08 4.67 4.29 4.13 mol HCO−3 m−3

Settler Layer
S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) Units

XSS 6394 356.07 356.07 356.07 356.07 356.07 68.98 29.54 18.11 12.5 g COD m−3

SI 30 30 30 30 30 30 30 30 30 30 g COD m−3

SS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 g COD m−3

SO 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 g O2 m−3

SNO 10.42 10.42 10.42 10.42 10.42 10.42 10.42 10.42 10.42 10.42 g N m−3

SNH 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 g N m−3

SND 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 g N m−3

SALK 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.13 mol HCO−3 m−3

Input Units

QIN 18846 m3 d−1

QA 55338 m3 d−1

QR 18446 m3 d−1

QW 385 m3

KLa
(1) 0 d−1

KLa
(2) 0 d−1

KLa
(3) 240 d−1

KLa
(4) 240 d−1

KLa
(5) 84 d−1

Q
(1)
EC 0 m3 d−1

Q
(2)
EC 0 m3 d−1

Q
(3)
EC 0 m3 d−1

Q
(4)
EC 0 m3 d−1

Q
(5)
EC 0 m3 d−1
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A.2 Agricultural Crop System
We consider the model of a crop grown in monoculture that is irrigated continuously with treated
wastewater over the course of a growing season on a uniform area of land at field-scale. As a
first approach, we assume the idealized model of (pelak et al., 2017) describing a simplified
crop development process focused on the water and nitrogen dynamics of the crop and soil.

From a system perspective, the crop dynamics are described using its canopy cover (C) and
plant biomass per unit area (B). The soil dynamics are described by the vertically averaged
relative soil moisture (S) and nitrogen content per unit area of soil (N). The crop is controlled
by manipulating the continuous irrigation described by its flow-rate per unit area (I) and its
nitrogen concentration (FN ). Table A.3 provides a description of each variable.

Table A.3: Crop system: State and input variables.

Description Units
C Canopy cover m2 m−2

B Crop biomass per unit area kg m−2

S Relative Soil moisture m3 m−3

N Nitrogen content per unit area of soil g m−2

I Irrigation flow-rate per unit area mm d−1

FN Nitrogen concentration of irrigation water g m−3

The state-space model for the crop system is given by

ẋ(t) = f (x(t), u(t)|θC) , (A.19)

with state x =
[
C B S N

]T ∈ R4
≥0 and input u =

[
I FN

]
∈ R2

≥0. The time-invariant dynamics
f(·|θC) depend on a set of parameters denoted by θC . We consider the parameters referring to
the dynamics of a modern corn cultivar grown on a silty loam type soil. The state equations are

Ċ = (rGfη(N)Ks(S)KcbET0)C − (rM + γ(t− tsen)Θ(t− tsen))C2; (A.20)

Ḃ = W ∗

ηC
(Ks(S)Kcbfη(N))C; (A.21)

Ṡ = 1
φZ

(
R+ I − (Ks(S)KcbET0)C − (Kr(S)KecET0)(1− C)− aN

SφZ
ksatS

d
)

; (A.22)

Ṅ = D + F − aN

SφZ
ksatS

d − (fη(N)Ks(S)KcbET0)C, (A.23)

where Θ(x) is the Heaviside function which is Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise. The
water stress coefficient Ks(S) and evaporation reduction coefficient fη(N) are defined as

Ks(S) =


0 S ≤ Sw
S−Sw
S∗−Sw Sw < S ≤ S∗

1 S ≥ S∗
; Kr(S) =

{
0 if S ≤ Sh
S−Sh
1−Sh otherwise

. (A.24)

The nitrogen uptake is saturated to a given critical concentration ηc according to the function

fη(N) =
{

aN
SφZ if aN

SφZ < ηc

ηc otherwise
. (A.25)

We adapt the model by defining the fertilization term F (t) = I(t)FN (t). As a simplification, we
consider the absence of any rainfall (R(t) = 0) and assume constant reference evapotranspiration
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ET0(t), the water loss due to the impact of climate on evaporation and plant transpiration.
Finally, the equations are dependent on the set of constant parameters presented at Table A.4

Table A.4: Crop system: Model constant parameters.

General parameter Value Units

rG Canopy growth per unit N uptake 560 m2 kg−1 N

rM Canopy decline due to metabolic limitation 0.2 d−1

γ Slope of increase of senescence after tsen 0.005 d−2

Kcb Maximum T/ET0 1.03 dimensionless
Kec Maximum E/ET0 1.1 dimensionless
tsen Days until onset of senescence 110 d
W ∗ Normalized daily water productivity 3.37 · 10−2 kg B m−2 d−1

h Maximum harvest index 0.5 kg Y kg−1 B
ηC Maximum nitrogen concentration taken up 0.054 kg N m−3 water
D Nitrogen deposition rate 5.5 · 10−6 kg m−2 d−1

Ft Maximum nitrogen uptake 0.0286 kg N m−2

Climate and soil parameter Value Units

ET0 Reference evapotranspiration 5 · 10−3 m d−1

Sh Hygroscopic point 0.14 dimensionless
Sw Wilting point 0.17 dimensionless
S∗ Point of incipient stomatal closure 0.35 dimensionless
Sfc Field capacity 0.59 dimensionless
ksat Saturated hydraulic conductivity 0.33 m d−1

d Leakage parameter 13 dimensionless
a Fraction of nitrogen dissolved 1 dimensionless
φ Soil porosity 0.43 dimensionless
Z Soil depth 1 m

A.2.1 Optimal control formulation

We consider the problem of maximizing crop biomass at the end of a growing season (neto;
haddon, et al., 2021). This task is formalised by the finite-horizon optimal control problem of

max
uC(·)

B(T ) (A.26a)

s.t.
∀t∈[0,T ]

ẋC(t) = fC(xC(t), uC(t)|θC), (A.26b)
uC(t) ∈ [0, Imax]× [0, Fmax

N ], (A.26c)
xC(0) = x0, (A.26d)

for fixed final time T , initial state x0, and input upper bounds Imax and Fmax
N . We restrict

ourselves to growing seasons lasting T = 140 days. In the following, we present the optimal
control solutions over several simulated scenarios. Each non-linear optimisation Eq. (A.26) is
solved using a dynamic programming approach. (bonnans et al., 2017). As the state-space is
low-dimensional, values functions for Eq. (A.26) can be efficiently computed.

The optimal control actions are obtained over three different scenarios corresponding to different
initial soil nitrogen content. Specifically, we consider N(0) = 1 g m−3 for Scenario I, N(0) = 8.2
g m−3 for Scenario II, and N(0) = 15 g m−3 for Scenario III. The same initial conditions are
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Figure A.1: Crop model: Nitrogen concentrations of irrigation water, FN , for optimal crop growth.

considered for the remaining state-variables in all scenarios. The resulting optimal irrigation
nitrogen FN for each scenario are shown in Figure A.1. In general, the controller must supply
more nitrogen to the crop in Scenario I than in Scenarios II and III. We note, for our experiments,
that this does not translates into more biomass as the crop is initially under stress and the
controls are unable to drive the soil nitrogen concentrations to the critical level fast enough.
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B Omitted proofs and definitions
In the following we present additional definitions and detailed proofs for the the theorems
presented in Part II. The theorems are restated in this section.

B.1 Observability of LTI systems
This section presents the observability counterpart of all definitions and theorems in Section 3.2.

Classical controllability and observability

Let the observability Gramian of the pair (A,C) be the Nx ×Nx symmetric matrix

Wo(t) =
∫ t

0
eA

TτCTCeAτdτ , (B.1)

a sufficient and necessary observability condition is det(Wo(t)) 6= 0, ∀t > 0. The computation
of Gramian-based criteria in Eq. (B.1) is straightforward but unpractical. Equivalent criteria
can be defined in terms of the system’s observability matricx (kalman, r., 1960).

Let O =
[
CT ATCT (AT)2CT · · · (AT)Nx−1CT

]T
be the (Ny×Nx)×Nx observability matrix

of the system. A sufficient and necessary condition for observability is

rank(O) = Nx. (B.2)

By verifying that O is full-rank, the criteria in Eq. (B.2) is more direct and, for low-dimensional
systems, its evaluation only requires a small number of matrix multiplications. However, the
computation of matrix O can still be troublesome when the dimensionality of the state vector is
large. This limitation is due to numerical over- and under-flow that may result from computing
large powers of A and AT.

A scalable alternative that overcomes the limitations of both Gramian-based and Kalman’s rank
criteria is provided by the Popov-Belevitch-Hautus (PBH) test for observability. Necessary and
sufficient conditions are given by the following lemma:

Lemma B.1. (hautus, 1970). The following statements are all equivalent:

I. The pair (A,C) is observable (B.3a)

II. rank(
[
λI −AT CT

]T
) = Nx, ∀λ ∈ C; (B.3b)

III. rank(
[
λiI −AT CT

]T
) = Nx, ∀λi ∈ σ(A) ⊂ C. (B.3c)

Based on Lemma B.1, the pair (A,C) is said to be observable if and only if, for each λi ∈ σ(A)
(that is, when rank(λiI − AT) < Nx), the columns of C have at least one component in the
direction νi ∈ RNx , νi being the associated eigenvector of A associated to λi; The eigenvectors
νi for which rank([λiI − AT CT]T) < Nx indicate directions that are unobservable with the
measurements determined by C. Since observability is invariant with respect to similarity
transformations represented by nonsingular matrices P ∈ RNx×Nx , the following holds:

• Pair (A,C) is observable if and only if pair (A′, C ′) = (P−1AP,CP ) is observable.

Controllability and observability metrics

Full-state controllability and observability are binary properties. Starting from the seminal work
by Müller and Weber (1972), various scalar metrics have been proposed to quantify the difficulty
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of the control and observation task. We overview energy-related metrics recently proposed by
Pasqualetti et al. (2014), and Summers et al. (2016) for the observability of LTI systems.

Define the quadratic control and measurement energies

Ec (u(t), t|R) =
∫ t

0
uT(τ)Ru(τ)dτ = ‖u(t)‖2R; (B.4a)

Eo (y(t), t|Q) =
∫ t

0
yT(τ)Qy(τ)dτ = ‖y(t)‖2Q. (B.4b)

In optimal quadratic regulation, we search for a controller that minimises the sum of these
energies, for some user-defined positive definite weighting matrices R and Q (size Nx ×Nx and
Ny × Ny, respectively). When minimised individually with the identity matrix Q = Iy, the
unweighted measurement energy determine

• x(0) = W−1
o (t)

∫ t
0 e

ATτCTy(τ)dτ , the initial state from measurement ỹ(t) of minimum
L2-effort E∗o (t|ỹ(t)) = x(0)TWo(t)x(0).

Finite- and infinite-horizon observability metrics can be derived from Eq. (B.1). The eigenvectors
{νnx(λonx)}Nxnx=1 associated with the eigenvalues λonx ∈ σ (Wo(t)) correspond to directions of
increasingly larger output energy the smaller λonx. The measurement effort associated with pair
(A,C) can thus be quantified by single scalars defined from the spectrum σ (Wo(t)) = {λonx}Nxnx=0.

Because infinite-time Gramian, Wo(∞), always exist for Hurwitz systems, Eq. (3.7), and their
computation can be performed efficiently by solving Lyapunov equations (benner et al., 2008),
we only overview a number of infinite-time metrics. Their finite-time counterparts are evaluated
by integrating Eq. (3.9) and (B.1).

Definition B.1. (Energy-related observability metrics, (summers et al., 2016)) Let Wo(∞) be
the solution of Wo(∞)AT +AWo(∞) + CTC = 0. The output effort for the pair (A,C) can be
quantified according to the following scalar metrics:

I. trace (Wo(∞)): Inversely related to the output effort averaged over all state-space direc-
tions;

II. trace
(
W †o (∞)

)
: Related to the output effort averaged over all directions in the state-space;

III. log (det(Wo(∞))): Related to the volume of a Nx-dimensional hyper-ellipsoid whose points
are observable with one unit or less of output energy;

IV. λomin (Wo(∞)): Inversely related to the output energy along the least observable eigen-
direction.

By duality, the measurement effort associated to attempting to reconstruct the full-state by only
measuring one individual state variable xinx at a time is quantified by

Co(nx) = trace (Wo,nx(∞)) . (B.5)

This non-negative quantity, the average observability centrality (summers et al., 2016), is
computed by assuming a single sensor that measures only the nx-th state variable: That is,
when C = eTnx, a unit vector in the standard basis of RNx . The infinite-horizon observability
Gramians Wo,nx(∞) ∈ RNx×Nx are computed independently for all nx ∈ {1, . . . , Nx} by solving
Wo,nx(∞)AT +AWo,i(∞) = −enxeTnx.
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Structural controllability and observability

The structural pair (A,C) can be studied by mapping the state and output equations onto
a digraph Go = (Vo, Eo). The vertex set Vo = VA ∪ VC consists of the union of vertex set
VA = {x1, . . . , xNx} of state components and of vertex set VC = {y1, . . . , yNy} of outputs, while
the edge set Eo = EA ∪ EC is the union of set EA = {(xnx1 , xnx2) | Anx1,nx2 6= 0} of directed
edges between state component vertices and set EC = {(xnx, yny) | Cny,nx 6= 0} of directed edges
between state and output components vertices.

The pair (A,C) is said to be structurally observable if the nonzero elements of A and C can be
set in such a way that the system is observable in the classical sense. Formally,

Definition B.2. (Structural Observability). The pair (A,C) is said to be structurally observable
if and only if there exists an observable pair (Ā, C̄) of the same dimension and structure of the
pair (A,C) such that ‖Ā−A‖ < ε and ‖C̄ − C‖ < ε, for an arbitrarily small ε > 0.

Two pairs (A,C) and (Ā, C̄) have the same structure if they have the same dimensions and each
element Anx1,nx2 6= 0 (respectively, Cny,nx 6= 0) whenever Ānx1,nx2 6= 0 (respectively, C̄ny,nx 6= 0).
Because of the duality between controllability and observability, also the necessary and sufficient
conditions for structural observability can be derived from (lin, 1974):

Lemma B.2. Let Go = (Vo, Eo) be the directed network associated to the pair (A,C). The pair
(A,C) is said to be structurally observable if and only if the following conditions hold:

• (Accessibility) For every xnx ∈ VA there exists at least one directed path from xnu to any
yny ∈ VC .

• (Dilation-free) For every S ⊆ VA, |T (S)| ≥ |S|, where T (S) = {vj ∈ Vo | xnx ∈ S ∧
(xnx, vj) ∈ Eo} denotes a neighbourhood set for S.

The first condition can be verified by identifying the output vertices that are accessible from
each possible origin vertex (a state component) using any graph search algorithm. The second
condition can be verified by forming a maximum matchingM⊆ Γ of an equivalent bipartite
graph K = (V+

A ∪V
−
A ,Γ) and then checking that all unmatched state vertices xnx ∈ V+

A are directly
connected to distinct output vertices in Go = (Vo, Eo) (liu et al., 2013). The bipartite graph
K = (V+

A ∪V
−
A ,Γ) is defined by the disjoint and independent vertex sets V+

A = {x+
1 , . . . , x

+
Nx
} and

V−A = {x−1 , . . . , x−Nx}, and by the undirected edge set Γ = {(x+
i , x

−
j ) | (xi, xj) ∈ EO}. Unmatched

state vertices linked to distinct output vertices form a V+
A−perfect matching.

Stabilizability and detectability

A system is said detectable if it is possible to asymptotically approximate its state-vector from a
sequence of measurements. This condition is often perceived as a weaker alternative to full-state
observability. Formally,

Definition B.3. (Detectability). The pair (A,C) is said to be detectable if, giving any initial
state x(0), it is possible to compute a state estimate x̂(t) from the force-free evolution of y(t), so
that (x(t)− x̂(t))→ 0 as t→∞.

By duality, sufficient and necessary conditions for detectability can be also derived from the
Kalman canonical decomposition of the system. Let O = [CT ATCT (AT)2CT · · · (AT)Nx−1CT]T
be the RNyNx×Nx observability matrix of a system (A,C), with rank(O) = N1 ≤ Nx. There
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exists a nonsingular matrix Po ∈ RNx×Nx , whose first N1 rows are the linearly independent rows
of O, such that the transformation x̃ = P−1

o x results in a model in the form[
˙̃xo(t)
˙̃xō(t)

]
=
[
Ão 0
Ã21 Ãō

] [
x̃o(t)
x̃ō(t)

]

y(t) =
[
C̃o 0

] [x̃o(t)
x̃ō(t)

]
,

with x̃o(t) ∈ RN1 and x̃ō(t) ∈ R(Nx−N1). A sufficient and necessary condition for detectability
is that Re(λj) < 0 for all λj ∈ σ(Ãō) ⊂ σ(A) (chen, 1998). Although straightforward, this
criterion is unpractical for high-dimensional systems as the design of Po requires the computation
of the observability matrix O = [CT ATCT (AT)2CT · · · (AT)Nx−1CT]T.

A scalable alternative is given by the Popov-Belevitch-Hautus (PBH) detectability test, based
on the Hautus lemma:

Lemma B.3. (hautus, 1970). Let σ(A) = {λi}Nxi=1 be the spectrum of A. Now, let σ̃(A) =
{λi | λi ∈ σ(A) ∧ Re(λi) ≥ 0} be the set of eigenvalues with positive real part. The statement
‘the pair (A,C) is detectable’ is equivalent to the following statements:

I. rank(
[
λI −AT CT

]T
) = Nx, ∀λ ∈ C≥0; (B.6a)

II. rank(
[
λiI −AT CT

]T
) = Nx, ∀λi ∈ σ̃(A) ⊂ C≥0. (B.6b)

Thus, the pair (A,C) is detectable if and only if, for each unstable eigenvalue λi of A (that is,
when Re(λi) ≥ 0 and rank(λiI −AT) < Nx), the rows of C have at least one component in the
state-space direction associated to the eigenvector of A corresponding to λi, νi ∈ RNx . Notice
that every system (A,C) with a stable matrix A is consequently detectable, since σ̃(A) = ∅.

B.2 Optimal control and estimation
In the following, the detailed proof of theorem and prepositions of Chapters 4 and 5 are presented.

Lemma B.4. (Affine state-space discretisation) Consider a continuous-time affine state-space,

ẋ(t) = z +Ax(t) +Bu(t) +Gw(t); (B.7a)
y(t) = Cx(t). (B.7b)

Considering piecewise constant inputs u(t) = u(tk) and w(t) = w(tk) for every t = [tk, tk+1),
with tk ∈ k∆t given sampling period ∆t > 0, the discrete-time realisation of Eq. (B.7) is

xk+1 = z∆t +A∆txk +B∆tuk +G∆twk; (B.8a)
yk = Cxk, (B.8b)

with matrices A∆t = eA∆t, B∆t = S∆tB, G∆t = S∆tG, and vector z∆t = S∆tz, given auxiliary
S∆t = A−1(eA∆t − I). The discrete variables are xk = x(k∆t), uk = u(k∆t) and wk = w(k∆t).
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Proof. Consider the state equation in Eq. (B.7a). Multiplying both sides by e−At leads to

e−Atẋ(t) = e−At
(
z +Ax(t) +Bu(t) +Gw(t)

)
;

e−Atẋ(t)− e−AtAx(t) = e−At
(
z +Bu(t) +Gw(t)

)
;

d(e−Atx(t))/dt = e−At
(
z +Bu(t) +Gw(t)

)
,

in which the last step we use the property d(e−Atx(t))/dt = e−Atẋ(t)− e−AtAx(t). Integrating
both sides from initial instant tk = k∆t to instant tk+1 = (k + 1)∆t yields

(
e−Atx(t)

)∣∣tk+1
tk

=
∫ tk+1

tk

e−Aτ
(
z +Bu(τ) +Gw(τ)

)
dτ ;

e−Atk+1x(tk+1)− e−Atkx(tk) =
∫ tk+1

tk

e−Aτ
(
z +Bu(τ) +Gw(τ)

)
dτ ;

e−Atk+1x(tk+1) = e−Atkx(tk) +
∫ tk+1

tk

e−Aτ
(
z +Bu(τ) +Gw(τ)

)
dτ.

Finally, multiplying both sides by the matrix exponential eAtk+1 results in the state transition

xk+1 = A∆txk +
∫ tk+1

tk

eA(tk+1−τ)(z +Bu(τ) +Gw(τ)
)
dτ,

with A∆t = eA(tk+1−tk) = eA∆t. Letting u(τ) = uk and w(τ) = wk for the interval τ ∈ [tk, tk+1),

xk+1 = A∆txk +
∫ tk+1

tk

eA(tk+1−τ)dτz +
∫ tk+1

tk

eA(tk+1−τ)dτBuk +
∫ tk+1

tk

eA(tk+1−τ)dτGwk,

from which we define S∆t =
∫ tk+1
tk

eA(tk+1−τ)dτ . Defining λ = tk+1 − τ and using the property
AeAλ = d(eAλ)/dλ, the matrix S∆t can be written as

S∆t = −
∫ 0

∆t
eAλdλ =

∫ ∆t

0
(A−1A)eAλdλ = A−1

∫ 0

∆t
AeAλdλ = A−1(eAλ)∣∣∆t0 = A−1(eA∆t − I)

The corresponding discrete-time affine state-space is thus given by

xk+1 = z∆t +A∆txk +B∆tuk +G∆twk;
yk = Cxk,

with matrices B∆t = S∆tB, G∆t = S∆tG, and constant vector z∆t = S∆tz.

Theorem B.5. (c-AQR Transcription) Consider the optimal control problem in Definition. 4.3.
The described optimization can be converted into a quadratic program

min
U

UTHU + gTU + r (B.9a)
s.t. EuU ≤ eu (B.9b)

with decision vector U = (xk, . . . , xk+N , uk, . . . , uk+N−1) ∈ R(N)Nx+(N−1)Nu and symmetric
matrix H = HT � 0. Assuming the sequential approach, the problem reduces to decision vector
U = (uk, . . . , uk+N−1) ∈ R(N−1)Nu and positive definite matrix H = HT � 0.

Proof. In the first part of this proof, we assume the simultaneous approach. Considering the
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terms in Eq. (4.10a) regarding the controls un (n = k, . . . , k +N − 1),

k+N−1∑
n=k

‖un − uspn ‖2R =
k+N−1∑
n=k

(un − uspn )TR(un − uspn )

=


uk
...

uk+N−1


T
R · · · 0
...

. . .
...

0 · · · R




uk
...

uk+N−1

− 2


uspk
...

uspk+N−1


T
R · · · 0
...

. . .
...

0 · · · R




uk
...

uk+N−1



+


uspk
...

uspk+N−1


T 

R · · · 0
...

. . .
...

0 · · · R




uspk
...

uspk+N−1


= ŨTR̃Ũ − 2Ũ spT

R̃Ũ + Ũ sp
T
R̃Ũ sp.

Assuming Qf = Q, without loss of generality, the terms regarding xn (n = k, . . . , k +N) are

k+N∑
n=k
‖xn − xspn ‖2Q =

k+N∑
n=k

(xn − xspn )TQ(xn − xspn )

=


xk
...

xk+N


T 

Q · · · 0
...

. . .
...

0 · · · Q



xk
...

xk+N

− 2


xspk
...

xspk+N


T 

Q · · · 0
...

. . .
...

0 · · · Q



xk
...

xk+N



+


xspk
...

xspk+N


T 

Q · · · 0
...

. . .
...

0 · · · Q



xspk
...

xspk+N


= XTQ̃X − 2XspT

Q̃X +XspT
Q̃Xsp.

Letting U = (xk, . . . , xk+N , uk, . . . , uk+N−1) = [X Ũ ]T, the cost function is transcribed as

J∆t(x, u) =
[
X

Ũ

]T [
Q̃ 0
0 R̃

] [
X

Ũ

]
+
(

2
[
Q̃ 0
0 R̃

] [
Xsp

Ũ sp

])T [
X

Ũ

]
+
[
Xsp

Ũ sp

]T [
Q̃ 0
0 R̃

] [
Xsp

Ũ sp

]
;

= UTHU + gTU + r,

which is in the form of Eq. (B.9a). The dynamic constraints are converted into the inequality

0 ≤


−I 0 · · · 0 0
A∆t −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0
0 0 · · · A∆t −I

X +


0 0 · · · 0
B∆t 0 · · · 0
...

...
. . .

...
0 0 · · · 0
0 0 · · · B∆t

 Ũ +


x̂k

z∆t +G∆tw0
...

z∆t +G∆twk+N−2
z∆t +G∆twk+N−1

 ≤ 0,

which is in the form 0 ≤ ẼxX + ẼuŨ + ẽu ≤ 0. This expression can also be written as[
Ẽx Ẽu
−Ẽx −Ẽu

]
U ≤

[
ẽu
−ẽu

]
.
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Moreover, the inequalities Hxxn ≤ hx and Huun ≤ hu (for n = 0, . . . , N−1) are written as

Hx · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · Hx 0 · · · 0
0 · · · 0 Hu · · · 0
...

. . .
...

...
. . . 0

0 · · · 0 0 · · · Hu


U ≤



hx
...
hx
hu
...
hu


,

which is in the form diag[HX H
Ũ

]U ≤ [hX h
Ũ

]T. Finally, all constraints are compiled as
Ẽx Ẽu
−Ẽx −Ẽu
HX 0
0 H

Ũ

U ≤


ẽu
−ẽu
hX
h
Ũ

 ,
which is in the form of Eq. (B.9b), EuU + ExX ≤ eu, with Ex = 0.

In the second part of this proof, we assume the sequential approach with U = (uk, . . . , uk+N−1).
Considering the solution of the recursive formula, xn+1 = An+1

∆t x0 + ∑n
k=0A

k
∆tB∆tun−k+1 +∑n

k=0A
k
∆t(G∆twn−k+1 + z∆t), the vector X = (xk, . . . , xk+1) is expanded as

X =


A0

∆t
A1

∆t
...

AN∆t

xk +


0 0 · · · 0
B∆t 0 · · · 0
...

...
. . .

...

AN−1
∆t B∆t AN−2

∆t B∆t · · · B∆t

U + Z = Ãxk + B̃U + Z,

with constant term Z = ∑n
k=0A

k
∆t(G∆twn−k+1 + z∆t). Using this representation, the terms of

the cost function regarding xn (n = k, . . . , k +N) yield

k+N∑
n=k
‖xn − xspn ‖2Q = XTQ̃X − 2(Xsp)TQ̃X + (Xsp)TQ̃Xsp;

= UTB̃TQ̃B̃U + 2(Ãxk + z +Xsp)TQ̃B̃U + const.

Using the previous result of ∑k+N−1
n=k ‖un − uspn ‖2R = UTR̃U − 2(U sp)TR̃U + (U sp)TR̃U sp, the

cost function can thus be transcribed as

J∆t(xk, u) = UT(B̃TQ̃B̃ + R̃)U + 2(B̃TQ̃Ãxk + B̃TQ̃z + B̃TQ̃Xsp + R̃U sp)TU + r

with all constant terms accumulated in r = (Ãxk + Z)TQ̃(Ãxk + Z) + 2(Xsp)TQ̃(Ãxk + Z) +
(Xsp)TQ̃Xsp + (U sp)TR̃U sp. This equation is in form Eq. (B.9a), with H = (B̃TQ̃B̃ + R̃) � 0.
Similarly to the previous part, the inequality constraints are represented as

HxA
0
∆t

...
HxA

N
∆t

0
...
0


xk +



0 · · · 0
...

. . .
...

HxA
N−1
∆t B∆t · · · HxB∆t
Hu · · · 0
...

. . . 0
0 · · · Hu


U ≤



hx
...
hx
hu
...
hu


,
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which is the form hxk +EuU ≤ ẽu. Finally, this inequality can be represented in the form of Eq.
(B.9b) by defining the vector eu = ẽu − hxk .

Lemma B.6. (Maximum a posteriori estimate, MAP) Let x0 ∼ px0(x0|θx0), vk ∼ pv(vk|θv) and
wk ∼ pw(wk|θw), and consider the HMM described in Eq. (5.3). The maximum a posteriori
(MAP) estimate from the posterior probability P (x,w|y) is the solution of

max
x0, · · · , xk+1,
w0, · · · , wk

P̃ (x,w|y) = px0(x0)
k∏

n=0
pv(vn|θv)pw(wn|θw) (B.10a)

s.t.
∀n∈[0,k]

xn+1 = f∆t(xn, un, wn|θx), (B.10b)
xn ∈ X , wn ∈ W, (B.10c)

Proof. Consider the maximum a posteriori estimate of the probability P (x,w|y),

max
x0, · · · , xk+1,
w0, · · · , wk

P̃ (x,w|y) = p(y0, . . . , yk|x0, . . . , xk+1, w0, . . . , wk)p(x0, . . . , xk+1, w0, . . . , wk).

Using the Markov property and the fact that the measurements are independent, the likelihood
probability P (y|x,w) = p(y0, . . . , yk|x0, . . . , xk+1, w0, . . . , wk) can be factorized as

P (y|x,w) =
k∏

n=0
p(yn|y0, . . . , yn−1, x0, . . . , xk+1, w0, . . . , wk) =

k∏
n=0

p(yn|xn).

Considering the change of variable yn = g(xn, un) + vn,

P (y|x,w) =
k∏

n=0
p(g(xn, un) + vn|xn) =

k∏
n=0

pvn(vn|θv)

Using the Markov property and the fact that the process noise is independent, the prior
probability P (x,w) = p(x0, . . . , xk+1, w0, . . . , wk) can also be factorized as

P (x,w) = px0(x0|w0, . . . , wk)
k∏

n=0
p(xn+1|x0, . . . , xn, w0, . . . , wk)p(wn|w0, . . . , wn−1)

= px0(x0|θx0)
k∏

n=0
p(xn+1|xn, wn)pwn(wn).

Restricting the support of xn+1 to the set Ω = {xk+1 = f∆t(xn, un, wn|θx) : ∀xn ∈ X , ∀wn ∈ W},

P (x,w) = px0(x0|θx0)
k∏

n=0
pwn(wn|θw).

Therefore, the MAP estimate can be expressed through the optimisation

max
x0, · · · , xk+1,
w0, · · · , wk

P̃ (x,w|y) = px0(x0)
k∏

n=0
pv(vn|θv)pw(wn|θw) (B.11a)

s.t.
∀n∈[0,k]

xn+1 = f∆t(xn, un, wn|θx), (B.11b)
xn ∈ X , wn ∈ W. (B.11c)
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Theorem B.7. (c-AGM Transcription) Consider the optimal estimation problem in Definition.
5.3. The described optimization can be converted into a quadratic program

min
W

WTHW + gTW + r (B.12a)

s.t. EwW ≤ ew (B.12b)

with decision vector W = (xk−N+1, . . . , xk+1, wk−N+1, . . . , wk) ∈ R(N)Nx+(N−1)Nw and symmet-
ric matrix H = HT � 0. Assuming the sequential approach, the problem reduces to decision vector
W = (xk−N+1, wk−N+1, . . . , wk) ∈ RNx+(N−1)Nw and positive definite matrix H = HT � 0.

Proof. Identical to the proof of Theorem B.5.
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