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Otaćılio Bezerra Leite Neto

Banca Examinadora:

Prof. Dr. Francesco Corona (Orientador)
Departamento de Computação
Universidade Federal do Ceará
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Resumo

A disciplina de Engenharia de Sistemas de Controle se tornou uma área ub́ıqua na maioria
das aplicações tecnológicas modernas. Recentemente, dado os avanças em áreas tais como

Aprendizagem por Reforço, atenção tem sido dada à necessidade de resolver problemas de
controle para sistemas altamente complexos em ambientes carregados de incerteza. Com essa
motivação, a área de Controle Robusto e Ótimo se apresentou como uma posśıvel solução a esses
problemas. Essas técnicas lidam com o design the controles automáticos que manipulam um
sistema a fim de otimizar uma função objetiva, considerando também a possibilidade de incerteza
em qualquer aspecto desse processo. Neste trabalho, os principais resultados em Controle
Ótimo são revisitados em detalhe, focando nos clássicos controladores Linear-Quadráticos (LQ)
que assumem um modelo linear do sistema e um ı́ndice de performance quadrático para ser
minimizado. A otimização discutida nesse trabalho é solucionada através de uma abordagem
de Programação Dinâmica. Em adição a isso, Estimadores de Estado Ótimos, especificamente
estimadores por Filtros de Kalman, são formulados e integrados aos controles ótimos a fim de
lidar com a incerteza acerca do estado real do sistema. Servindo como blocos de construção até
estes conceitos, os resultados gerais para modelagem e controle de sistemas dinâmicos também é
apresentado, apesar de que apenas os mais importantes e recorrentes teoremas são descritos em
detalhes. Os controladores são avaliados à luz de uma classe espećıfica de processos qúımicos,
o reator cont́ınuo perfeitamente agitado (CSTR). Um modelo espećıfico de um sistema dentro
dessa classe, o qual é altamente não-linear e carregado de incerteza, é utilizado em simulação
como um benchmark para demonstrar a abordagem robusta e ótima.

Palavras-Chaves: Controle Ótimo, Control Linear Quadrático, Controle de Processos, Es-
timação Ótima, Filtro de Kalman, Reatores Qúımicos.





Abstract

T he discipline of Control Systems Engineering has become ubiquitous in most modern
technological applications. Recently, given the advances in fields such as Reinforcement

Learning, attention has been drawn to the need for solving control problems from highly complex
systems in conditions loaded with uncertainty. Given this motivation, the field of Optimal
and Robust Control presents itself as a feasible solution to these problems. These techniques
accounts for the design of automatic controllers that manipulates a system in order to optimize
an objective function, considering also the possibility for uncertainty in any aspect of this process.
In this work, the main results in optimal control are revisited in detail, focusing in the classical
Linear Quadratic (LQ) controllers which assumes a linear model of a system and a quadratic
performance index to be minimized. The optimization discussed in this work is solved through a
Dynamic Programming approach. In addition to this, optimal state estimators, namely Kalman
Filter estimators, are formulated and integrated to the optimal controllers in order to deal with
the uncertainty regarding the real state of a system. As building blocks for these concepts, the
general results for dynamical systems modeling and control is also presented, although only the
most important and recurrent theorems are described in detail. The controllers are evaluated in
the light of a specific class of chemical processes, the continuous stirred tank reactors (CSTR). A
specific model of a system within this class, which is highly nonlinear and loaded with uncertainty,
is used in simulation as a benchmark to demonstrate the optimal and robust approach.

Keywords: Optimal Control, Linear Quadratic Control, Process Control, Optimal Estimation,
Kalman Filter, Chemical Reactors.
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Chapter 1

Introduction

This chapter presents the main problem in discussion and the basic concepts concerning its
formulation and solutions, which are detailed further in the next chapters. This is a work on
Control Theory and its application to Chemical Reactors, therefore the discussion will follow
the notation common to the literature of this field, and the modern approach to this theory is
explored.

The sections are organized as follows: Section 1.1 provides a general view on control systems
engineering, Section 1.2 discuss chemical reactor systems and its importance in both industry
and academia, Sections 1.3 and 1.4 describes the motivation and justification of this work,
respectively, and Section 1.5 details the subsequent chapters in this document.

1.1 Control Systems Engineering

The discipline of Control Systems Engineering deals with the design of devices, named controllers,
that are integrated to a physical system (a dynamical system, in most cases) in order to impose
a desired behavior to this system. To achieve this goal, the discipline covers topics ranging
from applied mathematics, such as dynamical systems theory and signal processing, to a more
engineering discussion, regarding instrumentation and implementation of these controllers in a
real-life plant or individual system.

A system, in a broad physical sense, is defined as an ensemble of interacting components that
responds to external stimuli producing a determined dynamical response, and whose individual
parts are not able to produce the same functionality by their own. Thus, the first essential
element in Control Theory is a mathematical model of the system of interest. One such model is
the Input-Output Representation, in which an input stimuli, a signal u(t), acts on the system
producing an output response, a signal y(t), described by the following differential equation:

αn
dny(t)

dtn
+ αn−1

dn−1y(t)

dtn−1
+ · · ·+ α1

dy(t)

dt
+ α0y(t) =

βm
dmu(t)

dtm
+ βm−1

dm−1u(t)

dtm−1
+ · · ·+ β1

du(t)

dt
+ β0u(t)

. (1.1)

In this representation, the input u(t) is called the manipulated variable, since it represents
an arbitrary stimuli that can be given directly by human action or a by an automatic controller,
while the output y(t) is called the controlled variable, since it can only be modified indirectly
through u(t). This also leads to a cause-and-effect interpretation of the system.

A model can provide a quantitative understanding of the system that is useful both to
access some response specifications and to design controllers to modify them based on some
requirements. In the case of the model in (1.1), it is possible to calculate the response y(t), and
its derivatives, resulting from any specific action u(t). Besides, a model can be used to perform
computer simulations, in order to visualize the dynamical behavior of the system without actually

1



2 CHAPTER 1. INTRODUCTION

manipulating it, since real experiments could be expensive or even damage the system. Consider,
for instance, a schematic and a simulation for a model representing a mass-spring-damper system,
shown at Fig. 1.1.
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Figure 1.1: The schematic of a simple Mass-Spring-Damper system and its dynamical response
to being forced by an unitary constant force.

In this simulation, quantities as the rise time, peak time, overshoot ratio and steady-state
value of the visualized signal are examples of response specifications that can be defined to
describe the system behavior to an external stimuli (in this case, a constant force of unit
magnitude). These specified parameters are characteristic to responses of a class of systems
known as underdamped second-order systems, that will be discussed further in the document.

A controller is used to calculate, for a time t ∈ [t0, tN ], the necessary input u(t) to produce
an output y(t) as close as possible to a desired reference signal r(t). There are two common
configurations, shown in Fig. 1.2, of how to connect the controller to the system.

Controller System
u(t)r(t) y(t)

(a)

Controller System
u(t)

Sensor

r(t) + e(t) y(t)

−

(b)

Figure 1.2: The two most popular configurations for connecting controllers to dynamical systems.

The configuration shown in the upper left of Fig. 1.2, known as the Open-Loop Controller,
calculates the action as a function u(t) = π(r, t), given an initial condition y(t0) = y0. In this
case, the controller does not observe the output y(t), and relies on the model to guarantee that
the system is driven to the reference. Of course, if there are any external disturbances acting on
this configuration, or if the model is not reliable enough, it is not possible to guarantee that the
requirements are met. Thus, these type of controllers are not suitable for critical applications,
and its use is restricted to systems where deviance from the desired reference can be tolerated.
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In contrast, the configuration in the lower right of Fig. 1.2, known as the Closed-Loop
Controller or Feedback Controller, calculates the action as a function u(t) = π(e, t), where
e(t) = r(t)− y(t) is the error between the reference and the actual response. Now, the controller
will observe the system output, trough some sensor device, and compares it to the desired
reference in order to calculate a corrective action. This feedback property can make the system
reject disturbances while still driving it to the desired reference. Thus, the Feedback Controller
became the most popular choice of controller configuration in industry for a wide range of
applications, even for critical ones. [Syrmos et al., 1997].

1.2 Chemical Reactor Systems

A chemical reaction, the transformation of a chemical substance into another, is a process central
to chemistry and to nature itself. A reaction equation is an intuitive representation of such
transformations. For instance, consider the following equation representing a synthesis reaction:

A+ 2B −→ 3C +D. (1.2)

In this equation, the compounds A and 2B forms the set of reactants, R, while 3C and D
forms the set of products, P. The coefficients in such equations are the stoichiometric numbers,
providing an information about proportionality between the quantity of each substances in this
reaction.

Usually the products can be directly used as reactants in another reaction, in which case
they can also be referred as an intermediate product (or byproduct), and the equations can be
appended in a “series” representation. In this case, each k-th intermediate product forms a set
Ik. In addition to a chain of series reactions, there is also the possibility of different reactions to
occur in parallel, in the same system. The combination of these sets of reactants, byproducts,
products and reactions are often referred as a chemical reaction network, and the associated
equation can be represented in general form as:

R(1) −→ I(1)
1 −→ · · · −→ I(1)

M1
−→ P(1)

R(2) −→ I(2)
1 −→ · · · −→ I(2)

M2
−→ P(2)

...
...

...
...

...

R(N) −→ I(N)
1 −→ · · · −→ I(N)

MN
−→ P(N)

. (1.3)

Moreover, chemical reactions displays a dynamical behavior concerning the speed at which
a reaction occurs. This rate of reaction, its kinetics, are dependent on the conditions in the
environment, such as temperature and pressure, and on some properties of the reaction itself. In
the case of a isothermal process, i.e., when the temperature in the environment remains constant,
this rate can be calculated as a constant K, leading to a representation on the form:

R K−→ P. (1.4)

When the temperature in the environment is not constant, the process is said to be endother-
mic or exothermic if, respectively, it consumes or produces energy. The kinetics of the reactions
in such processes are usually functions of the temperature T which are assumed to follow the
following form, known as the Arrhenius equation

K(T ) = K0e
−E/R

T , (1.5)

where K0 is the nominal kinetic rate, E is an activation energy associated with the reaction, R
is the universal gas constant and T is the absolute temperature (in kelvins).
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System


R(1) K11−→ · · · K1n−→ P(1)

...
...

...

R(N) Kn1−→ · · · Knn−→ P(N)

Reactants Products

(a) Isothermal chemical reactor

System


R(1) K11(T )−→ · · · K1n(T )−→ P(1) ∆H1

...
...

...

R(N) Kn1(T )−→ · · · Knn(T )−→ P(N) ∆Hn

Reactants

Heat Capacity

Products

Temperature

(b) Non-isothermal chemical reactor

Figure 1.3: General graphical representations of common chemical reactor systems.

In practice, these chemical reactions are produced by mixing the reactants in some en-
vironment with adequate conditions. In order to control the quantities of these substances,
actual processes consists in a manipulation of the concentrations of reactants in some container,
usually by providing a mass flow of these substances through some fluid. A major interest is
to manipulate the reactants in some way to produce a desired concentration of one or more
products in the chemical reaction network, allowing this problem to be addressed by a control
engineering perspective. A chemical reactor system, depicted in Fig. Fig. 1.3a, is a system
where the concentration of some reactants is manipulated to produce a desired concentration of
some products, given a chemical reaction network describing the reaction between these entities.

When the process is non-isothermal, the occurrence of a reaction contributes to the entropy
of the environment, and consequently affects the kinetics of the subsequent ones. To compensate
for this, practical applications also try to control the conditions in the environment using
instruments external to the reactions themselves. Because of the use of the Arrhenius equation
to model these reaction rates, this control is usually implemented through a cooling or heating
system coupled to the original reactor system, resulting in the schematic on Fig. 1.3b. Moreover,
note that the equation associated with non-isothermal reactions suffers a change of notation to
include the value of entropy change, denoted ∆H, resulting in the following general equation
known as the reaction heat equation:

R K(T )−→ P ∆H. (1.6)

1.3 Motivation

The use of automatic controllers to impose a desired behaviour to physical systems is a practice
ubiquitous in many engineering fields. In the last years, the price of digital computers have been
dropping while their performance have been growing. Consequently, digital controllers have
became the central key in developments in important and innovative fields such as aeronautics
[Eren et al., 2017, Goerzen et al., 2009, Wang and Su, 2015], autonomous driving [González
et al., 2016,Falcone et al., 2007,Cairano et al., 2014] and several industrial applications [Qin
and Badgwell, 2003,Tang et al., 2016,Holenda et al., 2008,Lucia et al., 2013]. In parallel, this
theory is also useful to understand and bring inspiration from nature itself since, for instance,
feedback controller characteristics were observed in the mechanisms for temperature regulation
observed in vertebrate animals [Heller et al., 1978] and in [Todorov and Jordan, 2002].

Most recent developments in Control Theory focus on using Feedback Controllers to achieve
Robust and Optimal Control. This theory accounts for the design of controllers that deals with
uncertainty, either from the model or from the observation of the system, and are able to achieve
the control objectives in a optimal manner. Despite being a few decades old, these fields have
gained a lot of interest in the last years thanks to recent results in Machine Learning theory,
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particularly in Reinforcement Learning, which have been successful in applying optimization
techniques for controlling artificial agents in environments loaded with uncertainty [Sutton and
Barto, 2018,Mnih et al., 2015].

Furthermore, the specific application of controlling chemical reactor systems brings benefits
from the fact that this class of dynamical system are present in many important biological and
industrial processes, such as wastewater treatment [Mulas et al., 2015,Gupta et al., 2012]. In
general, controllers can be used to guarantee safety constraints, maximize productivity and
minimize the use of resources, in such a way that could not be achieved without automatic and
high performing machinery. The inherent complexity and uncertainty existent in these systems
also poses this control problem as a challenging research field still open to be explored.

1.4 Objectives

This works aims to provide a self-contained discussion of modeling and control of chemical
rector systems in the perspective of modern control, with focus on optimal control theory.
Therefore, the results are focused on state-feedback controllers modeled in continuous time.
Several properties of the dynamical models of such systems, both in the open-loop and feedback
regime, are summarized in the document and the intention is to have a generalized mathematical
framework to understand, evaluate and design those control systems. Finally, a specific problem
concerning the control of a non-isothermal continuous reactor is explored to demonstrate an
application of the theory developed throughout the document.

1.5 Chapters Organization

The chapters of this document are mainly organized in two parts. The first part, comprised by the
chapters 2, 3 and 4, builds the necessary theoretical background and provides the mathematical
framework for modeling and control of the discussed systems. The second part, comprised by the
chapters 5 and 6, describes the experiments and results of applying these methods in real-world
applications.

Individually, the chapters are organized as follows. Chapter 2 introduces the concept of
dynamical models and their several properties with respect to a real system behavior. Chapter 3
discusses general results of state-feedback controllers and state observers. Chapter 4 presents the
theory of optimal estimation and optimal control, in a broad perspective. Chapter 5 describes
practical experiments in respect to a real-world continuous reactor system. Chapter 6 summarizes
and discusses the results of these experiments, emphasizing the theory from the previous sections.
Finally, chapter 7 concludes the document and highlight the most important results.
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Chapter 2

Dynamical System Analysis

This chapter discusses the mathematical models for dynamical systems. The sections starts
by introducing a procedure to build models from physical principles and presenting equivalent
common representations. Next, the time evolution of dynamical systems is analyzed in relation
to the mathematical structure of such models. Finally, some important properties of the systems
are defined and discussed. A discussion of the system evolution in the frequency domain is also
presented.

2.1 First Principles Models

A dynamical system is a physical system whose state evolves with time. One can represent a
dynamical system using the first principles from physics, and formulate the evolution in time
by calculating the rate of change of its state in respect to time. Thus, dynamical models are
represented using differential equations with time derivatives.

A straightforward procedure to model a system consists of identifying the variables of interest
and relate them using conservation laws, such as conservation of mass, conservation of energy or
conservation of momentum. The resulting models are in the form: Rate of

accumulation of
Mass/Energy/Momentum

 =

Mass/Energy/Momentum
entering

the system

−
Mass/Energy/Momentum

leaving
the system

 .

(2.1)

The choice of which conservation law to use depends on the system itself. Usually, conservation
of mass is used to relate dynamics of concentrations and volumes, or other material variables,
while conservation of momentum is used to relate dynamics of motion. Since energy can be
converted on form, the conservation laws of this quantity can be used to model several dynamics,
such as the rate of change in heat, electrical charges or velocity of a system.

In the case of a chemical reactor system, the variables of interest are the concentrations of
the chemical substances in the system. Hence, the rate of accumulation of a substance can be
represented using the mass conservation law, or mass balance:Accumulation

of mass
in the system

 =

 Mass
entering

the system

−
 Mass

leaving
the system


=

Mass flow
entering
system

+

 Mass
produced

by reactions

−
Mass flow

leaving
system

+

 Mass
consumed

by reactions

.
(2.2)

7
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Example 2.1. (Mass Balance of Reactors) For the sake of illustration, consider the process
of obtaining a first principles model for the concentration of a general substance in a reactor
system, as follows. Consider a system such as the one depicted in 1.3a. First of all, one has to
evaluate the mass flow through the system, as denoted in (2.2). The mass of any substance
A entering and leaving the system, denoted respectively by Min and Mout, are assumed to be

provided by a flow of fluid carrying the substance. Given a fluid inflow Fin, with density ρ
(A)
in ,

and an outflow Fout, with density ρ
(A)
out , the mass flow is calculated by equations:

Min = ρ
(A)
in Fin ; Mout = ρ

(A)
outFout. (2.3)

Now, one has to consider the quantities of mass that are consumed and produced by the
reactions of the chemical reaction network associated to the system. In this case, consider the
following reaction between two chemical compounds X and Y , with stoichiometric numbers α
and β:

αX
KXY−→ βY. (2.4)

Under the assumption that the reactant is in a dilute solution, the rate of this equation
obeys the law of mass action [Horn and Jackson, 1972]. Given a constant kinetic rate KXY and

the volume of the solution as V , the mass of X consumed, M
(X)
cons, and the mass of Y produced,

M
(Y )
prod, are given by the power-laws:

M
(X)
cons =

V

β
KXY (ρX)α ; M

(Y )
prod =

V

α
KXY (ρX)α, (2.5)

where ρX and ρY are the respective densities of these compounds. Assuming that the network
represents a set of reactions occurring within an chemical solution of volume V , the mass of a
substance A that is consumed and produced by the reactions, named respectively Mcons and
Mprod, are given by summing over the contribution of each reaction on the network where A is
either a reactant or a product to any other compound X:

Mcons = V
∑

αA→βX

1

β
KAX(ρA)α ; Mprod = V

∑
αX→βA

1

β
KXA(ρX)α. (2.6)

Finally, directly substituting these values in (2.2), the mass balance of any substance A in
an isothermal chemical reactor system can be represented by the general dynamical model:Accumulation

of mass
in the system

 =

Mass flow
entering
System

+

 Mass
produced

by reactions

−
Mass flow

leaving
System

+

 Mass
consumed

by reactions


d(ρAV )

dt
=

ρ(A)
in Fin + V

∑
αX→βA

1

β
KXA(ρX)α

−
ρ(A)

outFout + V
∑

αA→βX

1

β
KAX(ρA)α

 .
(2.7)

Since the system is closed, i.e., there are no leaks or unknown sources of fluids, the assumptions
of a constant volume implies that Fin = Fout = F . Normalizing each term by the volume and
substituting a new variable q = F/V results in:

d(ρA)

dt
= q(ρ

(A)
in − ρ

(A)
out ) +

 ∑
αX→βA

1

β
KXA(ρX)α

−
 ∑
αA→βX

1

β
KAX(ρA)α

 . (2.8)
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Notice some important restrictions to the use of the model just presented. First of all, to
calculate the mass contribution of an individual reaction was necessary to use a model which
assumes that the reactor system is actually comprised of a dilute solution in some closed container.
In industry, this means that the reactor system is actually a tank containing the solution. The
inflow and outflow of fluid can be represented by flows through pipes which can be manipulated
by some valve or pump. An illustration of such physical system is exhibited at Fig. 2.1a.

Furthermore, this model accounts for a single substance A, but the system is actually a
solution of several compounds, each one with a specific concentration. From the model presented,
it is visible that it is necessary to compute each concentration ρX before actually computing the
rate of change in ρA. However, from the same model, the computation of the rate of change
of any ρX may depend on ρA itself. Therefore, the change of concentration inside the whole
system is actually the result of a system of differential equations:

d(ρX1)

dt
= f(ρX1 , ρX2 , ..., ρXn , ρ

(X1)
in , ρ

(X1)
out , t)

d(ρX2)

dt
= f(ρX1 , ρX2 , ..., ρXn , ρ

(X2)
in , ρ

(X2)
out , t)

...

d(ρXn)

dt
= f(ρX1 , ρX2 , ..., ρXn , ρ

(Xn)
in , ρ

(Xn)
out , t)

, (2.9)

where X1, X2, ..., Xn are the chemical compounds inside the reactor and f(·) is the dynamical
model presented in Example 2.1.

Products

Fin 

Reactants

Fout

(a)

Q Tc

T

Products

Fin, Tin 

Reactants

Fout, Tout 

(b)

Figure 2.1: Schematic representations of industrial reactor tanks for (a) a simple isothermal
process and (b) a non-isothermal process with heating/cooling system.

The model discussed so far is fairly simple. To account for more complex systems, the same
modeling procedure can still be applied. For instance, it is possible to extend the description to
account for exothermic and endothermic processes, when the temperature inside the system has
a dynamical evolution and the dynamics of the reactions starts to depend on it.

When discussing non-isothermal processes, it is also common to discuss heating or cooling
systems that tries to impose certain operational conditions to the reactions, as illustrated in
Fig. 2.1b. In exothermic processes, for instance, the heat accumulated in the system tends
to grows as the reactions occurs, which can be very dangerous. One approach to regulate the
temperature consists in involving the chemical solution, or the container containing it, with a
material whose temperature can be manipulated, transferring or absorbing heat by conductance.
The temperature of this material can be manipulated by, for instance, running a heated fluid or
converting electrical energy to heat energy.
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Example 2.2. (Non-isothermal Reactor System) Consider the process of obtaining a first
principle model for a non-isothermal reactor, such as the one depicted in 1.3b. In this case, the
kinetic rates will follow the Arrhenius equation from (1.5). Following the same procedure from
Example 2.1, a dynamical model for the concentrations of a substance A, inside this reactor,
can be formulated as:

d(ρA)

dt
= q(ρ

(A)
in − ρ

(A)
out ) +

 ∑
αX→βA

1

β
KXAe

−EXA/R

T (ρX)α

−
 ∑
αA→βX

1

β
KAXe

−EAX/R

T (ρA)α

 ,

(2.10)
where EXA and EAX are the activation energy needed for each reaction, and the rest of the
parameters are still the same as defined in Example 2.1.

Furthermore, since the process is non-isothermal, the reactions will cause a change of
temperature inside the reactor system. Consider the temperature inside the reactor, denoted as
T . In this case, it is possible to relate its dynamics to the conservation law: Accumulation

of thermal energy
in the system

 =

Thermal energy
entering

the system

−
Thermal energy

leaving
the system


=

 Heat flow
entering

the system

−
 Heat flow

leaving
the system

+

 Entropy
contribution

from reactions

. (2.11)

It is well known, from Fourier’s law [Bergman et al., 2017], that the transfer of heat by
conduction between the reactor and the coolant/heater, in their respective contact interfaces, is
proportional to (TC − T ), where TC represents the temperature of the latter. Moreover, another
identifiable source of heat transfer consists in the fluid flow entering and leaving the system.
Similarly for the conduction, this heat contribution should also be proportional to (Tin − Tout),
where Tin and Tout are respectively the temperature of the fluid entering and leaving the reactor.

The entropy contribution from a reaction αX → βY , denoted as SXY , is proportional to the
concentration of ρX consumed, or produced, by the reactions multiplied by the energy that it
liberates or absorbs, as stated by the Hess’ Law [Atkins and de Paula, 2011]:

SXY ∼ KXY e
−EXY

T (ρX)α∆HXY . (2.12)

All the proportionality can be turned into equalities by imposing real constant factors that
are calculated independent of the dynamical variables. In the case of the heat transfer from
the fluid, this constant factor is the flow-rate q itself. Plugging all together, and summing the
entropy contribution from each reaction, the accumulation of heat can be modeled:

d(T )

dt
= q(Tin − Tout) + η(TC − T ) + δ

∑
αA→βX

KAXe
−EAX

T (ρA)α∆HAX . (2.13)

Consider now the heating/cooling system involving the reactor system. From the choice of
design of this apparatus, it is possible to manipulate the temperature of its material using a
heat capacity Q, up to a real factor of γ. Similar to the temperature inside the container, there
is the conduction of heat between the healing/cooling system and the walls of the container for
the reactor. Therefore, the model of heat accumulation for this quantity is simply given by:

d(TC)

dt
= γQ+ β(T − TC). (2.14)
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The non-isothermal reactor system is a more general model that accounts for the fact that
the temperature of the environment is usually not constant. From this assumption, the flow
entering and leaving the system are also not assumed to have the same temperature that the
fluid inside the reactor. In practical applications, the temperature of the fluid inflow can either
be manipulated or measured, where the temperature of the fluid outflow is actually assumed to
be equal to the temperature inside the reactor. In addition, the proportionality constants are
not functions of any dynamical variable, so they can be calculated before the operation of the
system by using the properties of the materials and containers.

In the case of this model, the rate of changes in the chemical concentrations depends on the
temperature through the Arrhenius equation. However, the temperature of the reactor itself
depends on those concentrations. So, as noted in (2.9), the dynamical model of the entire reactor
is a system of differential equations relating all those quantities.

2.2 Canonical Representations for Dynamical Models

The last section presented the foundation for modeling a dynamical system using first principles
from physics. Although it is a well-defined formulation, the resulting models are not guaranteed
to be practical in a mathematical sense. This motivates a discussion about possible canonical
formats for such models, which would allow for systematic analysis approaches. In the perspective
of control theory, that are two main formats for the model of a system: the Input-Output (IO)
and the State-Space (SS) representations.

An input-output representation is a simple model that describes the entire system using
only two types of variables, and their derivatives. Therefore, the dimension of these variables
and the order of derivatives at each differential equation provides the information about the
structure of the model. For instance, in the case where p = r = 1 the system can be classified as
a Single-Input Single-Output (SISO) configuration, whereas it is classified as a Multiple-Input
Multiple-Output (MIMO) configuration if p, r > 1. A formal definition is given below.

Definition 2.1. (Input-Output Representation) An Input-Output (IO) representation of a
dynamical system with p ≥ 1 output variables, represented by y : R → Rp, and r ≥ 1 input
variables, represented by u : R→ Rr, is the system of differential equations:

h1

(
y1, ẏ1, ..., y

(n1)
1 , u1, u̇1, ..., u

(m11)
1 , u2, u̇2, ..., u

(m12)
2 , ..., ur, u̇r, ..., u

(m1r)
r , t

)
= 0

h2

(
y2, ẏ2, ..., y

(n2)
2 , u1, u̇1, ..., u

(m21)
1 , u2, u̇2, ..., u

(m22)
2 , ..., ur, u̇r, ..., u

(m2r)
r , t

)
= 0

...

hp

(
yp, ẏp, ..., y

(np)
p , u1, u̇1, ..., u

(mp1)
1 , u2, u̇2, ..., u

(mp2)
2 , ..., ur, u̇r, ..., u

(mpr)
r , t

)
= 0

, (2.15)

where:

ẏ(t) =
dy(t)

dt
, ÿ(t) =

d2y(t)

dt2
, · · · , y(n)(t) =

dny(t)

dtn

and

u̇(t) =
du(t)

dt
, ü(t) =

d2u(t)

dt2
, · · · , u(n)(t) =

dnu(t)

dtn
.

This model presents a cause-and-effect interpretation of the system where the direct rela-
tionship between the input and output signal, and its derivatives, are equated as if the system
is a processing unit. In practice, the input signals u(t) are the manipulated variables of the
system, where the output signals y(t) are the observations of the controlled variables. This
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representation brings an easy visualization on how a desired system behavior can be achieved by
applying a specific input signal, posing as a practical framework for designing controllers.

The State-Space representation is another formulation for a dynamical model, centered in
the concept of state variables. In a formal definition, the set of state variables is the smallest set
of linearly independent variables that can unequivocally determine the value of all the states
variables given an initial state x(t0), at time t0 ∈ R, and a forcing function u(t), for any time
t ≥ t0. From a physical perspective, however, these variables may account for quantities that
can describe the dynamics of the system, such as position or velocities. In comparison to the
Input-Output representation, this formulation poses a simpler mathematical model, since it is
composed by a system of first order ordinary differential equations and a system of algebraic
equations. However, this model presents a semantical improvement over the latter since the
inclusion of the state variables expands the internal description of the system. A formal definition
is given below.

Definition 2.2. (State-Space Representation) A State-Space (SS) representation of a system
with n ≥ 1 states variables, represented by x : R→ Rn, for p ≥ 1 output variables, represented
by y : R→ Rp, and r ≥ 1 input variables, represented by u : R→ Rr, is given by the systems of
state and output equations:

State Equations: Output Equations:
ẋ1(t) = f1(x1, ..., xn, u1, ..., ur, t)

ẋ2(t) = f2(x1, ..., xn, u1, ..., ur, t)
...

ẋn(t) = fn(x1, ..., xn, u1, ..., ur, t)

;


y1(t) = g1(x1, ..., xn, u1, ..., ur, t)

y2(t) = g2(x1, ..., xn, u1, ..., ur, t)
...

yp(t) = gp(x1, ..., xn, u1, ..., ur, t)

, (2.16)

or, in the matrix form: {
ẋ(t) = f(x(t),u(t), t)

y(t) = g(x(t),u(t), t)
. (2.17)

u(t)
S

y(t)

(a)

u(t) y(t)x
1

x
n

...

(b)

Figure 2.2: Graphical interpretation of (a) Input-Output models and (b) State-Spaces models.

A graphical illustration of both representations is shown at Fig. 2.2. In the light of these
formulations, a system can be classified with respect to the model mathematical structure. There
are five main properties used for this classification: whether the system is causal or non-causal,
linear or nonlinear, dynamical or instantaneous, time-invariant or time-varying and with or
without delay. The necessary and sufficient conditions for each one of these properties are
summarized in Table 2.1.

This work focus on dynamical linear systems, since its models are the most well studied
in the control theory community. In reality, a physical system is always causal, nonlinear and
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Input-Output State-Space

Causal
mij ≤ nk

i ∈ [1, ..., p], j ∈ [1, ..., r]
Always causal

Linear

hi(·) =
∑ni

j=0 y
(j) + ...

...+
∑r

k=1

∑mik
l=0 u

(l)
k

i ∈ [1, 2, ..., p]

fi = ai(t)x(t) + bi(t)u(t), i = 1, 2, ..., n
gj = cj(t)x(t) + dj(t)u(t), j = 1, 2, ..., p

ai, cj ∈ R1×n and bi,dj ∈ R1×r

Dynamical
ni > 0 or mjk > 0

i, j ∈ [1, ..., p], k ∈ [1, ..., r]
n > 0

Time-Invariant
hi(yi(t), ..., u1(t), ..., ur(t)) = 0

i ∈ [1, 2, ..., p]
ẋ(t) = f(x(t),u(t))
y(t) = g(x(t),u(t))

Without-Delay
All the signals share

the same time arguments
All the signals share

the same time arguments

Table 2.1: Necessary and sufficient conditions for different classes of models.

time-varying [Vidyasagar, 2002], but the models can be assumed differently with fairly accuracy.
The benefit of linear systems is that it obeys the superposition principle, and a linear combination
of the inputs directly causes the exact same linear combination of the individual outputs. Under
the assumption of a linear system, a nice result is that the vectorial functions f(·) and g(·) of
the State-Space representation in (2.27) reduces to simple matrix forms.

Definition 2.3. (Linear State-Space Representation) A State-Space representation describing a
linear system with state vector x(t) : R → Rn, output vector y(t) : R → Rp and input vector
u(t) : R→ Rr is given by the system of equations:{

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
, (2.18)

where A(t) : R→ Rn×n, B(t) : R→ Rn×r, C(t) : R→ Rp×n and D(t) : R→ Rp×r. In the case
of a time-invariant linear system, these matrices becomes constants.

This formulation has the advantage that the time response of the system can be easily
calculated and that the analysis of the dynamics follows well-established results from linear
algebra applied to the matrices A(t), B(t), C(t) or D(t), as well as for the vectors x(t) and
u(t). Furthermore, the physical interpretation of the system through the state variables becomes
straightforward in this model.

In addition to the State-Space representation, the linear assumption also benefits Input-
Output representations. One major analytical tool that can be used in these cases is to transform
this model to a frequency domain, using a linear transform operator, in order to simplify the
solution for the differential equations. The most popular choice of transformation is the Laplace
transform, L{h(t)}, which converts functions in time to functions in complex frequencies. Using
the properties of this operator, differential equations are converted to simple algebraic equations.

Definition 2.4. (Transfer Function) Given a linear model for a SISO system, with initial
conditions y(0−) = u(0−) = 0, in the Input-Output formulation:

αn
dny(t)

dtn
+ · · ·+ α1

dy(t)

dt
+ α0y(t) = βm

dmu(t)

dtm
+ · · ·+ β1

du(t)

dt
+ β0u(t), (2.19)
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its correspondent transfer function, calculated in the Laplace domain, is defined as:

G(s) =
Y (s)

U(s)
=
βms

m + βm−1s
m−1 + · · ·+ β1s+ β0

αnsn + αn−1sn−1 + · · ·+ α1s+ α0
. (2.20)

An indirect result of this is that the SS representation can be converted to the IO represen-
tation using the Laplace transform operator, leading to a notion of equivalence between the two
representations. Notice that the extension to the MIMO case is straightforward: just compute
the transfer function between each pair of input and output, leading to the matrix G ∈ Cp×r,
for a system with p outputs and r inputs. For the general linear case, this matrix has the form:

G(s) =



Y1(s)

U1(s)

Y1(s)

U2(s)
· · ·

Y1(s)

Ur(s)

Y2(s)

U1(s)

Y2(s)

U2(s)
· · ·

Y2(s)

Ur(s)

...
...

. . .
...

Yp(s)

U1(s)

Yp(s)

U2(s)
· · ·

Yp(s)

Ur(s)


=



β
(11)
m11s

m11 + · · ·+ β
(11)
0

α
(1)
n1 s

n1 + · · ·+ α
(1)
0

· · ·
β

(1r)
m1 s

m1r + · · ·+ β
(1r)
0

α
(1)
n1 s

n1 + · · ·+ α
(1)
0

β
(21)
m21s

m21 + · · ·+ β
(21)
0

α
(2)
n2 s

n2 + · · ·+ α
(2)
0

· · ·
β

(2r)
m2 s

m2r + · · ·+ β
(2r)
0

α
(2)
n2 s

n2 + · · ·+ α
(2)
0

...
. . .

...

β
(p1)
mp1s

mp1 + · · ·+ β
(p1)
0

α
(p)
np s

np + · · ·+ α
(p)
0

· · ·
β

(pr)
mp s

mpr + · · ·+ β
(pr)
0

α
(p)
np s

np + · · ·+ α
(p)
0


.

(2.21)

Theorem 2.1. (Passage from SS to IO) Consider a linear and time-invariant system in State-
Space form with initial states x(0−) = 0 and represented as:{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
. (2.22)

The equivalent system in Input-Output representation is given by the transfer function:

G(s) = C(sI −A)−1B +D. (2.23)

Proof. Applying the Laplace formation to both sides of the equation, using the property of
derivative in time, results in:

L{ẋ(t)} = AL{x(t)}+BL{u(t)}
sX(s)− ẋ(0−) = AX(s) +BU(s)

. (2.24)

Substituting the derivative ẋ(0−) = 0 and doing some manipulations results in:

(sI −A)X(s) = BU(s)

X(s) = (sI −A)−1BU(s)
. (2.25)

Finally, applying the same procedure to the output equations, and using the previous result, the
Laplace transform of the output is:

L{y(t)} = CL{y(t)}+DL{u(t)}
Y (s) = CX(s) +DU(s)

= C
(
(sI −A)−1BU(s)

)
+DU(s)

=
(
C(sI −A)−1B +D

)
U(s)

. (2.26)
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Since, by definition, Y (s) = G(s)U(s), it is possible to obtain the transfer function matrix
G(s) = C(sI −A)−1B +D as an equivalent representation of the system.

Despite of the discussion about the benefits of linear models, it is necessary to account for the
fact that physical systems will present, in most situations, nonlinear behavior. For this reason,
some effort must be done to develop a linear model that can describe the nonlinear behavior
with certain accuracy, even if over some small region of the space. With this motivation, a
technique for linearization of a nonlinear model is detailed below.

Theorem 2.2. (Linearization by Taylor Expansion) Consider a nonlinear time-invariant system:{
ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))
. (2.27)

Given steady-state operating points xo, yo and uo, the dynamics of the system in the
neighborhood of these points can be represented by the linear model:{

∆ẋ(t) = A∆x(t) +B∆u(t)

y(t) = C∆x(t) +D∆u(t)
, (2.28)

where

A =
∂f

∂x

∣∣∣∣∣
xo,uo

; B =
∂f

∂u

∣∣∣∣∣
xo,uo

; C =
∂g

∂x

∣∣∣∣∣
xo,uo

; D =
∂g

∂u

∣∣∣∣∣
xo,uo

(2.29)

and
∆x(t) = x(t)− xo; ∆u(t) = u(t)− uo. (2.30)

Proof. Consider a system represented by state equations f(·) and output equations g(·), with
steady-state points xo, yo and uo. Now, consider a very small perturbation ∆u(t) in the input
signal around these operation points. This perturbation will result in small changes in the state
and output variables:

x(t) = xo + ∆x(t); u(t) = uo + ∆u(t); y(t) = yo + ∆y(t). (2.31)

This results in the following configuration on the State-Space:
d(xo + ∆x(t))

dt
= f(xo + ∆x(t),uo + ∆u(t))

yo + ∆y(t) = g(xo + ∆x(t),uo + ∆u(t))
, (2.32)

where d(xo + ∆x(t))/dt = d(∆x(t))/dt, since xo is constant. The perturbed variables are very
close to the steady-state points, hence the functions f(·) and g(·) can be approximated by a
Taylor series expansion, yielding:

d(∆x(t))

dt
= f(xo,uo) +

∂f

∂x

∣∣∣∣∣
xo,uo

∆x(t) +
∂f

∂u

∣∣∣∣∣
xo,uo

∆u(t) +O(∆x2,∆u2)

yo + ∆y(t) = g(xo,uo) +
∂g

∂x

∣∣∣∣∣
xo,uo

∆x(t) +
∂g

∂u

∣∣∣∣∣
xo,uo

∆u(t) +O(∆x2,∆u2)

. (2.33)
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Since the steady-state condition implies zero variation, it is possible to assume f(xo,uo) = 0
and g(xo,uo) = 0, since they are ordinary differential equations. Truncating in the first order
terms and substituting y(t) = yo + ∆y(t) results in:

d(∆x(t))

dt
=
∂f

∂x

∣∣∣∣∣
xo,uo

∆x(t) +
∂f

∂u

∣∣∣∣∣
xo,uo

∆u(t)

y(t) =
∂g

∂x

∣∣∣∣∣
xo,uo

∆x(t) +
∂g

∂u

∣∣∣∣∣
xo,uo

∆u(t)

. (2.34)

Finally, since all the Jacobians involved are actually matrices of appropriate dimensions, the
final linear approximation of the system is the SS model given by:{

∆ẋ(t) = A∆x(t) +B∆u(t)

y(t) = C∆x(t) +D∆u(t)
. (2.35)

Note that this method can be used to convert non-linear models obtained from the first-
principle procedure to a desirable State-Space form, since those models are usually in the
non-linear State-Space representation.

Example 2.3. (Van de Vusse Reactor) Consider, for instance, a reactor system describing an
isothermal process that follows the Van de Vusse reaction scheme [Van de Vusse, 1964]:{

A
KAB−→ B

KBC−→ C

2A
KAD−→ D

. (2.36)

Consider, also, that the concentration of substances A, B, C and D inside the fluid inflow and
outflow are described by the following conditions:{

ρ
(B)
in (t) = ρ

(C)
in (t) = ρ

(D)
in (t) = 0

ρ
(k)
out(t) = ρk(t), ∀k ∈ {A,B,C,D}

. (2.37)

Now, let x = [ρA, ρB, ρC , ρD]T and u = q, and assume that the states are perfectly observed, so
that y = x. Using Example 2.1, the nonlinear State-Space representation of this reactor is can
be modeled by the state-equations:

ẋ1(t) = u(t)(ρ
(A)
in − x1(t))− (KABx1(t) +KAD(x1(t))2)

ẋ2(t) = −u(t)x2(t) +KABx1(t)−KBCx2(t)

ẋ3(t) = −u(t)x3(t) +KBCx2(t)

ẋ4(t) = −u(t)x4(t) +
1

2
KAD(x1(t))2

. (2.38)

To select steady-state points xo and uo, it is necessary to find values for x(t) and u(t) that
satisfies the system ẋ(t) = 0. This can be done analytically, in some cases, or by using numerical
methods. Finally, the linear State-Space matrices (A,B,C,D) are obtained by taking the
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derivative each one of these equations in respect to each state and input, resulting in:

A =


−uo −KAB − 2KACx1o 0 0 0

KAB −uo −KBC 0 0
0 KBC −uo 0

KADx1o 0 0 −uo

 ; B =


ρ

(A)
in − x1o

−x2o

−x3o

−x4o

 ;

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ; D =


0
0
0
0


. (2.39)

Notice that the response of a linearized model represents the deviations around the given
steady-state points. If the errors in approximating the non-linearities of the actual system are
somehow tolerable, however, this model can still be used as a nominal model to represent the
system in any point in space. For the sake of illustration, the simulation of both the nonlinear
and the linear systems are displayed in Fig. 2.3, for a realization of the system accounted in
Example 2.3. In this realization, the kinetic rates were set as KAB = 5/6, KBC = 5/3 and

KAC = 1/6, and the inflow concentration was consider constant as ρ
(A)
in = 10 (mol/l). In

this simulation, the dashed line represents the linear response of the linearized model given
xo = [6.19, 1.09, 0.60, 1.05]T and u0 = 3.03. Notice how the linearized system is capable of
approximating the behavior of the non-linear system when closer to the steady-state point, but
starts to display an error when the system leaves that state.

0 1 2 3 4 5 6
0.0

1.0

2.0

3.0

4.0

5.0

u 
(1

/m
in

)

Time (min)

6.0

7.0

8.0

9.0

x 1
 (

m
ol

/l)

0.6

0.8

1

1.2

x 2
 (

m
ol

/l)

0 1 2 3 4 5 6

Time (min)

-0.5

0

0.5

x 3
 (

m
ol

/l)

0 1 2 3 4 5 6

Time (min)

0.4

0.6

0.8

1

x 4
 (

m
ol

/l)

Figure 2.3: Comparison between the nonlinear and linear response of the reactor system.
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2.3 Response Analysis in the Time Domain

Once that a model is well-established, it is possible both to simulate the system and to analyze its
response, given an initial state and input signal. This section focus on developing a quantitative
understanding of a system behavior through a linear model. The results are focused on
continuous-time response of linear and time-invariant systems in the form:{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
. (2.40)

First of all, it is necessary to access some properties of the matrix A, which describes the
influence of the states in the evolution of the system. Consider, in this case, the following matrix
defined by computing the exponential of the matrix A.

Definition 2.5. (State-Transition Matrix) Consider a system in State-Space representation
with matrix A ∈ Rn×n. Its State-Transition Matrix, eAt ∈ Rn×n , is the converging series:

eAt = I +At+
A2t2

2!
+
A3t3

3!
+ · · · =

∞∑
k=0

Aktk

k!
. (2.41)

This matrix is central to the computation of the system time response, since it can directly
relate the initial state of a system to any other state forward in time. Moreover, the exponential
of a matrix is not a trivial operation. However, the fact that the State-Space matrix A is always
a square matrix results in the following properties for the State-Transition matrix, stated below.

Theorem 2.3. Consider a matrix exponential as in Definition 2.5, for a matrix A ∈ Rn×n.
Then, the following properties holds:

I)
d(eAt)

dt
= AeAt; II) eAteAτ = eA(t+τ); III) e−AteAt = eAte−At; = I. (2.42)

The proof of these properties can be obtained directly from using the Definition 2.5 and
doing some algebra. Given these results, the calculation of the time response of a system in SS
representation becomes straightforward.

Theorem 2.4. (Lagrange Formula) Consider a LTI system in State-Space representation. Its
response for any time t ≥ t0, initial state x(t0) and input signal u(t) is given by the solutions of
the state and output equations:{

x(t) = eA(t−t0)x(t) +
∫ t
t0
eA(t−τ)Bu(τ)dτ

y(t) = CeA(t−t0)x(t) +C
∫ t
t0
eA(t−τ)Bu(τ)dτ +Du(t)

. (2.43)

Proof. First of all, consider a system in State-Space representation with state equation as defined
in (2.27). Multiplying both sides by e−At:

e−Atẋ(t) = e−At(Ax(t) +Bu(t))

e−Atẋ(t)−Ae−Atx(t) = e−AtBu(t)
. (2.44)
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Using the multiplication rule and the first property from Theorem 2.3, it is easy to see that
d[e−Atx(t)]/dt = e−Atẋ(t)−Ae−Atx(t). Substituting this result in (2.44) and integrating both
sides from t0 to t:

d(e−Atx(t))

dt
= e−AtBu(t)

e−Atx(t)
∣∣t
t0

=

∫ t

t0

e−AτBu(τ)dτ

e−Atx(t)− e−At0x(t0) =

∫ t

t0

e−AτBu(τ)dτ

. (2.45)

Multiplying both sides of (2.45) by eAt and using the second and third property from Theorem
2.3, the state response can be calculated as:

eAt
(
e−Atx(t) − e−At0x(t0)

)
= eAt

∫ t

t0

e−AτBu(τ)dτ

Ix(t)− eA(t−t0)x(t0) =

∫ t

t0

eA(t−τ)Bu(τ)dτ

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

. (2.46)

Finally, substituting (2.46) into the output equation leads to:

y(t) = C

(
eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

)
+Du(t)

= CeA(t−t0)x(t) +C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)

. (2.47)

When discussing the response of a system, the focus is directed to the state equation describing
its dynamics, since the output equation represents an observation of the system through the
states. In this sense, the Lagrange formula shows the nice characteristic of linear systems that
the total response is a composition of two separated actions:

x(t) = xn(t) + xf(t), (2.48)

where the natural response, xn(t), corresponds to the state-transition matrix multiplication term
and the forced response, xf(t), corresponds to the integral term. This concept is visualized in Fig.
2.4 for the total response of the first two states of the model derived in (2.39), given the operation
points xo = [6.19, 1.09] and uo = 3.03, excited with a step input u(t) = 3, t ∈ [0, 1.2]. In this
plot, the solid line represents the total response, whereas the dashed and dotted lines represents
the natural and forced response, respectively. It is easy to verify that the decomposition of the
total response is equal to the sum of those independent components.

In order to characterize the dynamical response of a system, there is still the need to compute
the state-transition matrix. This can be done in several ways [Moler and Loan, 2003]. A specific
method, known as the Sylvester expansion, is an analytical solution that brings an understanding
of the system behavior through the eigenvalues of the state-state matrix A.
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Figure 2.4: Simulation of the total response decomposition for the two first states of the model
from (2.39). Each state response is shown separately (left) and together into a trajectory
visualization (right), in which the steady-state point is indicated by a circle.

Theorem 2.5. (Sylvester expansion) Consider a matrix exponential function eAt for any square
matrix A ∈ Rn×n, whose distinct eigenvalues are λ ∈ Rm, m ≤ n, with associated multiplicity
vector ν ∈ Rm such that ‖ν‖1 = n. The result of this function can be expanded as

eAt = β0(t)I + β1(t)A+ β2(t)A2 + ...+ βn−1(t)An−1 =
n−1∑
i=0

βi(t)A
i, (2.49)

where βi(t) : R → R, i ∈ [1, 2, ..., n − 1], are scalar functions of time. These functions are
obtained by solving the linear system

V β = η, (2.50)

for the parameter vector β = [β0(t), β1(t), ..., βn−1(t)]T , given vector of modes η = [η1, η2, ..., ηm]T

such that

ηi =
[
eλit teλit t2eλit · · · tνi−1eλit

]T
and the confluent Vandermonde matrix V = [V1, V2, ..., Vm]T such that

Vj =


1 λj λ2

j · · · λ
(νj−1)
j · · · λn−1

j

0 1 2λj · · · (νj − 1)λ
(νj−1)
j · · · (n− 1)λn−2

j
...

...
...

. . .
...

. . .
...

0 0 0 · · · (νj − 1)! · · ·
(n− 1)!

(n− νj)!
λ
n−νj
j



The proof of this expansion is somewhat extensive, but a detailed discussion can be found
in [Chen, 1998]. Basically, the expansion in (2.49) is a direct application of the Cayley-Hamilton
theorem [Atiyah, 2018] and the linear system in (2.50) is a result of the Sylvester’s matrix
theorem [Horn and Johnson, 2012].

From the expansion presented in Theorem 2.5, it is possible to understand the relationship



2.3. RESPONSE ANALYSIS IN THE TIME DOMAIN 21

between the state-transition matrix eAt and each eigenvalue λ of the matrix A, also known
as the poles of the system. First of all, notice that the formulation of the linear system that
defines the parameters β0(t), β1(t), ..., βn−1(t) implies that each one of these functions are linear
combinations of the exponentials eλit for each eigenvalue λi, i = 1, 2, ...m. These exponentials
are known as the modes of the matrix A. Since the Sylvester expansion is linear in those
parameters, it is possible to conclude that the state-transition matrix, and consequently the
response of a system, is a linear combination of the modes.

Example 2.4. Consider, for the sake of illustration, the same State-Space model as the one
simulated in Fig. 2.3, but considering only the first two states (since they are independent of
the others). Its matrix A is shown below:

A =

[
−5.93 0
0.83 −4.70

]
. (2.51)

It is easy to see that λ = [−5.93,−4.70], since A is diagonal. The Sylvester expansion for the
exponential of this matrix has the parameter vector β = [β0(t), β1(t)] which solves the system[

1 −5.93
1 −4.70

] [
β0(t)
β1(t)

]
=

[
e−5.93t

e−4.70t

]
. (2.52)

The solution to this system is β = [4.82e−4.7t − 3.82e−5.93t, 0.813e−4.7t − 0.813e−5.93t]. Hence,
state-transition matrix is calculated through the expansion:

eAt = β0(t)I + β1(t)A

= 4.82e−4.7t − 3.82e−5.93t

[
1 0
0 1

]
+ 0.813e−4.7t − 0.813e−5.93t

[
−5.93 0
0.83 −4.70

]
=

[
e−5.93t 0

0.675e−4.7t − 0.675e−5.93t e−4.7t

] . (2.53)

The simulation in Fig 2.5 shows the evolution of each element of the state-transition matrix
from Example 2.4, for a given time interval. Considering only the natural response xn(t), i.e.,
setting u(t) = 0, t ∈ [t0, t], it is evident from the Lagrange formula that the time evolution of
each state is given by a row-wise weighted sum of these elements. The weights, in this case, are
given by the initial state x(t0). Therefore, the (i, j) element of this matrix describes how the
j-th state affects the response of the i-th state.

Now, attention must be drawn to the case where the eigenvalues are not real, but complex
and conjugate. Despite that the Sylvester expansion is still defined as in Theorem 2.5, this case
introduces a slightly different interpretation of the modes contributions to the natural response.

Theorem 2.6. Consider the same expansion defined in Theorem 2.5. Consider, now, that the
matrix A has two distinct eigenvalues λc, λ

′
c ∈ C in the form λc, λ

′
c = α± jω. In this case, the

linear system solved by the parameters β0(t), β1(t), ..., βn−1(t) will have two equations:{
β0 + αβ1 + α2β2 + ...+ αn−1βn−1 = eαtcos(ωt)

0 + ωβ1 + ω2β2 + ...+ ωn−1βn−1 = eαtsin(ωt)
. (2.54)
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Figure 2.5: Simulation of the state-transition matrix eAt from Example 2.4 for t ∈ [0, 1.5].

Proof. Consider the matrix A with eigenvalues as specified and the Sylvester expansion as
presented. In this case, there will be two equations in the system:{

β0 + λcβ1 + λ2
cβ2 + ...+ λn−1

c βn−1 = eλct

β0 + λ′cβ1 + (λ′c)
2β2 + ...+ (λ′c)

n−1βn−1 = eλ
′
ct

. (2.55)

Since the eigenvalues are complex and conjugate, it has that λc + λ′c = 2Re[λc] = 2α and
λc − λ′c = 2jIm[λc] = 2jω. Moreover, the Euler identity eα±jω = eαt(cos(ω)± jsin(ω)) shows
that eλ + eλ

′
= 2eαtcos(ωt) and eλ − eλ′ = 2eαtsin(ωt). In this case, summing the two rows and

subtracting the first row by the second one results in:{
β0 + 2αβ1 + 2α2β2 + ...+ 2αn−1βn−1 = 2eαtcos(ωt)

0 + 2jωβ1 + 2jω2β2 + ...+ 2jωn−1βn−1 = 2jeαtsin(ωt)
. (2.56)

Finally, dividing the first row by 2 and the second row by 2j results in (2.54).

From the same reasons stated before, this result implies that the actual response of the
system will have sinusoidal components that produces oscillations in the response. The modes
associated with complex and conjugate eigenvalues are classified as pseudo-periodic, since they
are composed by an exponential growth (or decay) enveloping a sinusoidal function.

Example 2.5. Consider, again for the sake of illustration, the following example. A toy system
is described by the matrix

A =

[
−0.1 0.5
−0.5 −0.1

]
. (2.57)

The eigenvalues of this matrix are given as λ, λ′ = −0.1± j0.5. The Sylvester expansion for the
exponential of this matrix has the parameter vector β = [β0(t), β1(t)] which solves the system[

1 −0.1
0 0.5

] [
β0(t)
β1(t)

]
=

[
e−0.1tcos(0.5t)
e−0.1tsin(0.5t)

]
. (2.58)
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The solution to this system is β = [e−0.1tcos(0.5t) + 0.2e−0.1tsin(0.5t), 2e−0.1tsin(0.5t). Hence,
state-transition matrix is calculated through the expansion:

eAt = β0(t)I + β1(t)A

= e−0.1tcos(0.5t) + 0.2e−0.1tsin(0.5t)

[
1 0
0 1

]
+ 2e−0.1tsin(0.5t)

[
−0.1 0.5
−0.5 −0.1

]
=

[
e−0.1tcos(0.5t) e−0.1tsin(0.5t)
−e−0.1tsin(0.5t) e−0.1tcos(0.5t)

] . (2.59)

The elements of the resulting state-transition matrix are shown in Fig. 2.6. It is possible
to see, in this case, the pseudo-periodic behavior of the complex conjugate modes, where the
dashed lines represents the exponential envelope.
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Figure 2.6: Simulation of the state-transition matrix eAt from Example 2.5 for t ∈ [0, 50].

The previous discussion on the modes of matrix A introduced the importance of the
eigenvalues of this matrix in analyzing the system response. The analysis, however, focused on
the natural response xn(t), whereas the forced response xf (t) was deliberately omitted. Now,
the analysis focus on the opposite case. Consider the two systems described by the matrices
(A(1), b(1)) and (A(2), b(2)) given below. These matrices are more complete descriptions of the
systems from Examples 2.4 and 2.5.

A(1) =

[
−5.93 0

0.83 −4.70

]
b(1) =

[
3.81
−1.09

]
; A(2) =

[
−0.1 0.5
−0.5 −0.1

]
b(2) =

[
1
1

]
. (2.60)

Considering initial states x(1)(0) = x(2)(0) = 0 and the input signals u(1)(t) = u(2)(t) = 1,
for time t ∈ [0, 60], the evolution of the first state of both systems are shown in Fig. 2.7. Since
A(1) is diagonal and A(2) has a pair of complex conjugate eigenvalues, it is possible to consider
that those are characteristic responses of aperiodic and pseudo-periodic modes, respectively, to
an unitary step input signal.

The unitary step is the default input signal used to analyze the forced response of dynamical
systems. This is due to the fact that any continuous signal can be approximated by a sequence
of step signals. When discussing the time evolution of systems given forcing input signals,
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Figure 2.7: One-state forced response of the two systems from (2.60).

the response can be separated into a transient regime and a subsequent steady-state regime.
The transient part of the response corresponds to the dynamical evolution from the previous
state equilibrium to the next steady-state point. The steady-state point, as already mentioned,
corresponds to the point in which the derivatives of the states are zero, which represents the
discharge of the initial energy given by the forcing input. These regimes can be characterized in
respect to the specifications given below.

Definition 2.6. (Unit-Step Response Specifications) Given a mode eλt associated with the
eigenvalue λ ∈ R, its contribution to the response has a time constant (τ) defined as

τ = −
1

λ
. (2.61)

Furthermore, given pseudo-periodic modes eλt and eλ
′t associated with the eigenvalues

λ, λ′ = α ± jω of a matrix A, their contribution to the response has a time constant (τ), a
natural frequency (ωn) and a damping coefficient (ζ) defined as:

τ = −
1

α
; ωn =

√
α2 + ω2 ; ζ = −

α

ωn
. (2.62)

The specifications just defined provides a quantitative way to describe the response of a
system in terms of time and frequencies. The time constant, for instance, is a quantity that
represents the time needed for the mode to lost 63% of its initial value, since eλτ = e−1 = 0.37.
A greater value of a time constant indicates that the system is able to “discharge” energy
faster. The damping coefficient, in turn, provides an information about the intensity of the
peak in the pseudo-periodic responses, which is known as overshoot (or undershoot in the case
of a negative peak) and the natural frequency represents the oscillation of the response before
reaching steady-state. From the perspective of control theory, these are some of the specifications
used to define desirable transient responses to a controlled system.

Notice that the response specifications are always functions of the real and imaginary parts
of the eigenvalues. This brings the possibility of a visualization in the complex plane to interpret
how each eigenvalue contributes to the total response. A straightforward notion is that the
closer an eigenvalue is to the imaginary axis, the faster is its contribution. Similarly, the furthest
an eigenvalue is to the real axis, the more oscillatory is its contribution. Finally, a vector from
the origin of the plane to a complex eigenvalue has a norm equal to the natural frequency (ωn)
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and the cosine of the angle formed with the imaginary axis is equal to the damping factor (ζ).
A simulation of the contributions from different eigenvalues are shown in Fig. 2.8.
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Figure 2.8: Eigenvalues of a system and the forced response associated with their modes.

2.4 Similarity Transformations

A State-Space representation can be interpreted through a system of coordinates. A state, in
this context, represents a point as visualized through this reference. Under the assumption of a
linear time-invariant system, there is an intuition that is possible to change the representation of
the states by changing this system of coordinates through some linear transformation, obtaining
a different representation to the same system. This is the motivation for this section.

First of all, consider a brief reflection about the geometrical interpretation of a State-Space
model. Let any state-vector at an arbitrary time t be x(t), defined in the R2 space. Naturally, it
is possible to associate to this vector an orthonormal basis I ∈ R2, the 2-dimensional identity
matrix. There is, however, the possibility to associate any other arbitrary basis to represent
a state-vector and visualize both states through this new perspective. When the basis is not
orthogonal, a change in the state-vector in a direction parallel to a component of the basis, i.e., a
change in only one element of this vector, also produces a change in other directions if observed
through the original orthonormal basis. This is an interesting result, since it allows for the use
of a single direction to represent the simultaneous evolution of both states.

In the State-Space formulation, the matrix A represents a linear function that maps state-
vectors from Rn to itself. When applying a new basis to represent the state-vectors, it is intuitive
that the mapping performed by this function also changes so that it still represents the same
linear combination of the states.

Theorem 2.7. (Similarity Transformation) Consider a system in SS representation described by
the matrices (A,B,C,D) and a nonsingular transformation matrix P ∈ Rn×n. An equivalent
representation for the transformation z(t) = Px(t) is:{

ż(t) = Ãz(t) + B̃u(t)

y(t) = C̃z(t) + D̃u(t)
, (2.63)

where:

Ã = PAP−1 ; B̃ = PB ; C̃ = CP−1 ; D̃ = D. (2.64)



26 CHAPTER 2. DYNAMICAL SYSTEM ANALYSIS

Proof. Consider a SS representation and any nonsingular matrix P ∈ Rn×n. Making z(t) =
Px(t) leads to x(t) = P−1z(t). Substituting this in the state equation results in:

ẋ(t) = Ax(t) +Bu(t)

P−1ż(t) = AP−1z(t) +Bu(t)

Iż(t) = PAP−1z(t) + PBu(t)

ż(t) = Ãz(t) + B̃u(t)

. (2.65)

Thus, substituting x(t) = P−1z(t) in the output equation results in:

y(t) = Cx(t) +Du(t)

= CP−1y(t) +Du(t)

= C̃z(t) + D̃u(t)

. (2.66)

By this theorem is it clear that, after transforming the state-vector, the entire dynamical
model (A,B,C,D) changes. This would imply that the analysis of the original system, for
its properties and time response, is not valid for the similar transformed system. However, as
discussed before, these transformations accounts for the same system when observed through a
different reference basis. Therefore, it is expected that the model presents the same analysis
results, as demonstrated below.

Theorem 2.8. Consider a system in State-Space form with matrix A. Consider also a similarity
transformation z(t) = Px(t) that results in a matrix Ã = PAP−1. In this case, A and Ã
shares the same set of eigenvalues.

Proof. The eigendecomposition problem is defined as Av = λv. From the similarity transforma-
tion, Ã = PAP−1 leads to A = P−1ÃP . Substituting this in the eigendecomposition:

P−1ÃPv = λv

ÃPv = λPv
. (2.67)

Considering the transformed eigenvector ṽ = Pv, it is clear that Ãṽ = λṽ. This implies
that matrices A and Ã shares the same set of eigenvalues λ.

It is clear from previous results that, since both the matrices shares the same set of eigenvalues,
the original and transformed model provides the same dynamical responses and, as shown later,
the same general dynamic properties. Therefore, the similarity transformation consists in
a method to produce new State-Spaces representations that emphasizes some geometrical
perspective of the model, hopefully helping to analyze a specific property, without actually
changing the relationship between the original model and the physical system.

The use of similarity transformations can also benefits the computation of functions of the
matrices of the State-Space representation, given that they impose a desirable structure to this
matrix. With this motivation, a popular transformation that provides a new representation with
computational advantages is the Similarity transformation.
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Theorem 2.9. (Diagonalization) Consider a n-dimensional system in State-Space form repre-
sented by the matrices (A,B,C,D). Let matrix A have n distinct real eigenvalues, i.e., λ ∈ Rn.
Performing the transformation z(t) = V x(t), where V = [v1,v2, ...,vn] is the modal matrix
composed by the eigenvectors vi ∈ Rn, i ∈ [1, ..., n], of matrix A, will result in a transformed
matrix Λ = V AV −1 is diagonal.

Proof. Since the eigenvalues are real and distinct, the eigenvectors must be linearly independent,
proving that the inverse V −1 always exist and that it is a feasible transformation matrix. Using
the identity for the eigendecomposition of matrix A:

λv = Av[
λ1v1 λ2v2 · · · λnvn

]
=
[
Av1 Av2 · · · Avn

]
[
v1 v2 · · · vn

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = A
[
v1 v2 · · · vn

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 =
[
v1 v2 · · · vn

]−1
A
[
v1 v2 · · · vn

]
Λ = V −1AV

. (2.68)

Thus, Λ is a diagonal matrix whose elements are the eigenvalues of matrix A.

A model with a diagonal matrix A has the nice property that the evolution of the states are
decoupled, in the sense that each state evolution is a linear function of itself. A geometrical
interpretation of this transformation is that the eigenvectors of this matrix produces a basis
that encode information about the interaction between those states, while the interaction in the
original formulation was the linear combination of the modes. This result can be easily extended
to the case where the eigenvalues are distinct conjugate complex pairs.

In this diagonalization procedure, the elements of the resulting matrix Λ are the very own
eigenvalues of the original matrix A. Furthermore, it is easy to verify that the state-transition
matrix for the transformed matrix, eΛt, is also a diagonal matrix whose elements are the modes
of the system, and can be easily computed as:

eΛt =

∞∑
k=0

Aktk

k!
=

∞∑
k=0

tk

k!


λk1 0 · · · 0
0 λk2 · · · 0
...

...
. . .

...
0 0 · · · λkn

 =



∞∑
k=0

tkλk1
k!

0 · · · 0

0
∞∑
k=0

tkλk2
k!

· · · 0

...
...

. . .
...

0 0 · · ·
∞∑
k=0

tkλkn
k!



=


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

 .

(2.69)
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In the case that the eigenvalues are not all distinct, it may be not possible to design a modal
matrix in the same way, since the eigenvectors could not be all linearly independent, and the
matrix would not form a basis. In those cases, however, it is still possible to design a generalized
modal matrix that transform the original matrix A to a quasi-diagonal matrix J , in which there
are decoupled states between blocks. This similarity transformation is known as the Jordan
form [Strang, 2016], and it generalizes the notion of diagonalization for any arbitrary matrix.

2.5 Stability, Controlability and Observability

When moving from the dynamical system analysis to a practical perspective of control theory, it
is necessary to define and discuss some important properties system and their models. These
are definitions concerning the stability, controllability and observability of dynamical systems.
Although those properties are established from the dynamical model of the system, they can
be directly related to questions about control and measurement instrumentation applied to the
control system. .

Stability

The first property to be discussed consists in the stability of a system. An instable system, as
the name suggests, is a system whose response does not converge to a specific value and rather
oscillates or grows unbounded. In physical scenarios, unstable systems are problematic, since
their response to external stimuli can result in dangerous situations to itself and, maybe, to
the environment around it. Because of this, determining the stability of a system is a crucial
procedure into analyzing a system that will be controlled. Under the several quantitative
methods to determine if a system is indeed stable, given a mathematical model, a popular and
practical one is the Bounded-Input Bounded-Output (BIBO) stability criteria.

Definition 2.7. (BIBO Stability) A dynamical system is defined as BIBO stable if every
bounded input stimuli |u(t)| ≤ ε <∞ produces in it a bounded output response |y(t)| ≤ δ <∞.

The main result behind this criteria is that the natural response of a system should vanish
as time evolves, i.e., x(t)→ 0 as t→∞. This result is very intuitive from Theorem 2.4, since
the vanishing of the natural response implies that eAt → 0 as t→∞ and the forced response
is expected to be bounded, if u(t) is bounded. Since the state-transition matrix is a linear
combination of the modes, and the modes are exponential functions of the eigenvalues of the
matrix A, it is possible to determine a condition for stability in the light of these quantities, as
shown in the following theorem.

Theorem 2.10. (BIBO Stability in SS) A system in State-Space form, represented by a matrix
A ∈ Rn×n with eigenvalues λ ∈ Rn, is BIBO stable if and only if Re[λi] < 0, ∀i ∈ [1, 2, ..., n].

A detailed proof of this theorem can be found in Appendix A. First of all, note that this
criteria depends only on the eigenvalues of matrix A, so the stability property of a system is
invariant to any similarity transformation, since A and any transformed matrix Ã = PAP−1

shares the same eigenvalues. From the previous results it is also known that the real part of
the eigenvalues, independent of their multiplicity or domain, appears as the arguments of the
exponential functions that are the system modes. Therefore, an eigenvalue with a negative
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real part will produce a mode that decays exponentially, as this theorem shows. By the same
argument, if the matrixA has at least one eigenvalue λj = 0 such that Re[λi] ≤ 0, ∀i ∈ [1, 2, ..., n],
then the mode associated with this eigenvalue is a constant and the natural response becomes
bounded. This configuration is known as a marginally stable condition, in the BIBO perspective.
The time response of a 2-nd order system is shown Fig. 2.9 for three different poles configurations,
given an unitary step.
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Figure 2.9: Stability of forced responses given the positions of the system poles.

Controllability

Later chapters will discuss the possibility of stabilize an unstable system through a controller.
There are, however, some restrictions to the possibility of controlling or not the states of a
system, which includes the necessity of discussing controllability. The controllability of a system
states whether it is possible to calculate an input signal that drives the system to any arbitrary
point in the space, in a finite time interval. This property accounts exclusively for this possibility,
in the sense that it does not account for the operational feasibility of actually applying this input
signal into a physical system, since it may need more energy than an actuator can produce.

Definition 2.8. (Controllability) A system in State-Space form with matrices (A,B) is said to
be controllable if, for any initial state x(t0) = x0 and terminal state x(T ) = xT , T <∞, there
exists an input signal u(t), t ∈ [t0, T ], that can transfer x(t0) to x(T ). Otherwise, the system is
said to be uncontrollable.

There are several methods to analyze the controllability of a system given a mathematical
model and the definition above. A popular criteria introduces the concept of a controllability
matrix and has a nice geometrical interpretation.

Theorem 2.11. (Controllability in SS) Consider a system in linear State-Space form with
matrices (A,B) and the controllability matrix C ∈ Rn×nr defined as:

C =
[
B AB A2B · · · An−1B

]
. (2.70)

The system is controllable if and only if C has full row rank.
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An intuition behind this theorem is that the full row rank condition implies that C has n
linearly independent columns, therefore these columns can be used as a basis for what is known
as the controllable subspace. To better understand that, consider the following forced solution
xf (t) given by the Lagrange formula:

xf (t) =

∫ t

0
eA(t−τ)Bu(τ)dτ. (2.71)

From the Cayley-Hamilton theorem, it is possible to represent eA(t−τ) as a linear combination
of scalars βi(t − τ) and powers of the matrix Ai, i ∈ [0, 1, ..., n − 1]. Using this theorem to
substitute the matrix exponential at (2.71), and letting τ2 = t− τ for easier manipulation, the
forced response can be represented as:

xf (t) =

∫ t

0

(
n−1∑
i=0

βi(τ2)Ai

)
Bu(t− τ2)dτ2 =

n−1∑
i=0

(
AiB

) ∫ t

0
βi(τ2)u(t− τ2)dτ2

=
n−1∑
i=0

(
AiB

)
β̃i(u, t),

(2.72)

where AiB are the columns of the matrix C and β̃i(u, t), comprising the integral term, is a
function that depends only on the input signal u(t) and time t. This result implies that the
forced response xf (t) is a linear combination given by the columns of C. If C has n linearly
independent columns, than it spans the entire n-dimensional space, i.e., the entire state space,
and thus any desirable state vector can be reached. If the column rank of C is less than n, then
only a subspace of smaller dimension can be reached.

Observability

While the discussion on controllability concerns the possibility of driving a system to a desirable
state through an actuator signal, there is also the necessity to discuss the possibility of determining
the internal state of a system given the output signal y(t). This property, known as observability,
comes from the fact that any output of a system, related to the states through the matrix C,
may be a combination of states, and that some states may not even be present in the output
signal. Thus, it is necessary to know if it is possible to reconstruct x(t) through y(t).

Definition 2.9. Observability A system in State-Space form with matrices (A,C) is said to be
observable if, given an input signal u(t) and output signal y(t), over the interval t ∈ [t0, T ], it is
possible to uniquely determine the value of the initial state x(t0). Otherwise, the system is said
to be unobservable.

Similarly to the controllability property, there are several ways to analyze the observability
of a system, given a mathematical model. A popular criteria introduces the concept of an
observability matrix.

Theorem 2.12. (Observability in SS) Consider a system in linear State-Space form with matrices
(A,C) and the observability matrix O ∈ Rnq×n defined as:

O =
[
C CA CA2 · · · CAn−1

]T
. (2.73)

The system is observable if and only if O has full column rank.
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The interpretation of this theorem follows the same intuition of before: if the matrix O has
full column rank, then it can be used as a basis to span a subspace with the same dimension as
the State-Space. In fact, the proof of both theorems follows the same procedures and there is a
direct relationship between controllability and observability, known as the Theorem of Duality.

The concepts of controllability, observability and their duality, together with the conditions to
fulfill these properties, were first introduced by [Kalman, 1960b]. The geometrical interpretations
of both theorems may suggest a practical solution for the cases where a system is uncontrollable
or unobservable. In the first case, the solution would be to add specific actuators to the
system, in the condition that they are linearly independent between themselves and the ones
actually in operation. The same procedure can be done to solve the unobservable problem, but
adding more sensors instead. Those procedures would change the matrices B and C and could
ensure the necessary conditions in matrices C and O. Of course, the implementation of such
instrumentation may not be practical, due to technical or economical constraints. In the case
which these additional devices are not feasible, one is restricted to control and/or observe only a
subspace of the state variables.

2.6 Response Analysis in the Frequency Domain

Although the response of dynamical systems are naturally perceived in time, there are advantages
of analyzing the models in a frequency domain perspective. This analysis differs from a simple
time domain analysis from the fact that, in a steady-state regime, the response of a linear system
for a sinusoidal input is itself sinusoidal, with the same frequency but different amplitude and
phase, as illustrated at Fig. 2.10.

u(t) = Micos(ωt+ φi)

System

y(t) = Mocos(ωt+ φo)

Figure 2.10: Illustration of the steady-state response of LTI systems to sinusoidal inputs.

A common representation is the phasor representation, where M∠φ = Mcos(ωt + φ). In
the context of SISO Input-Output models, the response of the system can be summarized by a
transfer function which is also a phasor:

g(t) =
y(t)

u(t)
=
Mo∠φo
Mi∠φi

= Mg∠φg, (2.74)

where Mg = Mo/Mi and φg = φo − φi. Notice that this formulation makes the time-dependance
implicit in the system response, since it is periodic in this case. For this reason, the system
response can be visualized as a function of frequency rather than a function of time, and the
properties of the system can be accessed in this way. The two most popular techniques for
frequency response analysis are Bode plots [Bode, 1945] and Nyquist diagrams [Nyquist, 1932].
The first is a direct plot ofMg(ω) and φg(ω) for several values of ω, makingMg(ω) = 20log |G(jω)|
and φg(ω) = ∠G(jω), where G(jω) is a transfer function of a system evaluated for an input
signal with exclusively oscillatory components. The Nyquist diagram, in the other hand, is a
direct phasor visualization obtained by applying the Argument Principle to a contour containing
the entire right-hand side of the complex plane. Both visualizations are depicted in Fig. 2.11,
for a transfer function obtained by applying the transformation of Theorem 2.1 to the system
from (2.51):

G(s) =

[
3.81

s+ 5.92

− 1.09s− 3.33

s2 + 10.62s+ 27.84

]
. (2.75)
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Figure 2.11: Visualization of the two-states system in (2.75) in Bode plots (left) and Nyquist
diagrams (right). The blue and orange lines represents the states x1 and x2, respectively.

The immediate advantage of these visualizations is that is not necessary to compute an
entire simulation of this system, until it reaches steady-state, to be able to perform analysis,
which is really critic for high-dimensional systems with slow time-constants. In addition to
that, these visualizations (specially the Bode plot) can be easily sketched by hand with fairly
accuracy, allowing for some understanding of the system without need for solving differential
equations or the inverse Laplace transforms. For these reasons, frequency responses methods for
analyzing systems were ubiquitous for many years in industry applications, and some properties
assessments, such as closed-loop stability, are still better understood under this formulation, as
it will be shown in later chapters.



Chapter 3

Controller Synthesis

This chapter discusses the general results and properties for the design of controllers, focusing
on feedback architectures. The devices are motivated and formulated using the State-Space
model for dynamical systems, so the feedback is performed on the state response rather than on
the system output. For this reason, the results in this section focus on this formulation explicitly
through the state-equations, where the output-equations are made implicit.

3.1 State Feedback Controllers

In modern control theory, advances in computer performance and the maturing of State-Space
model analysis have made the design of controllers using State-Space models feasible for real-
world applications. This is usually desirable since these kind of models provides a practical
solution to understand dynamical system response and properties, so it is natural to want a
controller design technique that accounts for that representation. The most basic, yet very
popular, feedback controller used in those settings is the Full-State Feedback Controller, defined
below.

Definition 3.1. Full-State Linear Feedback Given a linear system in State-Space representation,
an input action u(t) is calculated by the linear control law π(·) through state-feedback as:

u(t) = π(r(t),x(t)) = r(t)−Kx(t), (3.1)

where r : R→ Rn is a state reference signal that the system must follows and K ∈ Rr×n is the
feedback gain matrix.

A block diagram of the closed-loop system for the state-feedback controller is shown at Fig.
3.1. In this schematic each blocks represents a function or operation that is applied to the
denoted signals, which themselves are represented by the arrows. The direction of the arrows
indicates whether the signal variable is an operand or a result of an operation.

Notice that the control law of the full-state feedback is both linear and time-invariant, which
makes the analysis of the closed-loop system similar to the one used in open-loop configurations.
Of course, this is a specific choice of control law, and feedback controllers can also be defined
using nonlinear or time-dependent functions. Notice that this new definition for the calculation
of u(t) allows for the following closed-loop representation of the system:

ẋ(t) = Ax(t) +B (r(t)−Kx(t))

= (A−BK)x(t) +Br(t)
. (3.2)

33
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Open-Loop System

B
∫

C

A

K

Controller

r + u + ẋ x y

+−

Figure 3.1: Block diagram of a state-feedback closed-loop system.

Clearly, the inclusion of a feedback controller in the loop is equivalent to transform an
open-loop system into a new system (Acl,B), with Acl = A−BK, whose manipulated variable
is now the reference signal r(t). Therefore, an appropriate choice of K allows to modify the
behavior of the closed-loop system such that a desirable behavior is obtained. To understand
better the capabilities of the state feedback, consider the following theorems.

Theorem 3.1. (Controller Canonical Form) If a SISO system in State-Space representation is
controllable, then by applying the transformation z(t) = Px(t), for a matrix P calculated as the
inverse of:

P−1 = C


1 α1 · · · αn−1

0 1 · · · αn−2

...
...

. . .
...

0 0 · · · 1

 , (3.3)

where [α1, α2, ..., αn−1] are the n − 1 first coefficients of the characteristic polynomial ∆(s) =
det(sI −A), the resulting representation is in the controller canonical form given as:

ż(t) =


−α1 −α2 · · · −αn−1 −αn

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 z(t) +


1

0
...

0

u(t)

y(t) =
[
β1 β2 · · · βn

]
z(t)

. (3.4)

Details for the proof of this theorem can be found in [Chen, 1998]. An equivalent result can
be provided for MIMO systems, but the result is cumbersome and does not highlight the main
results for the state-feedback. Using the canonical form just presented, it is possible to discuss
an important result for the state feedback controller.

Theorem 3.2. (Pole-Placement Method) If a system in State-Space representation is controllable,
then by state feedback using a gain matrix K ∈ Rr×n the eigenvalues of Acl = A −BK, the
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poles of the closed-loop system, can be placed arbitrarily in the complex plane, as long as complex
conjugate eigenvalues are assigned in pairs.

Proof. Suppose that the system is controllable. In this case, it can be converted to the controller
canonical form of Theorem 3.1. Substituting z(t) = Px(t) results in the following control law
for the state feedback:

u(t) = r(t)−K
(
P−1z(t)

)
= r(t)− K̃z(t). (3.5)

Applying the state feedback, the transformed closed-loop is given by:

Ãcl = P (A−BK)P−1 = PAP−1 − PBKP−1 = Ã− B̃K̃. (3.6)

From Theorem 2.8 it is known that Acl and Ãcl share the same set of eigenvalues, and,
consequently, the same characteristic equations. Consider this characteristic equation as:

∆(s) = det(sI −A) = sn + α1s
n−1 + α2s

n−2 + · · ·+ αn−1s+ αn. (3.7)

Given a set of coefficients [α̃1, α̃2, ..., α̃n] for a characteristic polynomial whose roots are the
closed-loop eigenvalues, define the transformed feedback gain matrix as:

K̃ =
[
α̃1 − α1 α̃2 − α2 · · · α̃n − αn

]
. (3.8)

Substituting this in (3.6), it is easy to see that the resulting representation is:
ż(t) =


−α̃1 −α̃2 · · · −α̃n−1 −α̃n

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 z(t) +


1

0
...

0

u(t)

y(t) =
[
β1 β2 · · · βn

]
z(t)

, (3.9)

whose characteristic polynomial is now described by the designed coefficients that yield the
desirable eigenvalues. Since Ãcl and Acl shares the same set of eigenvalues, it can be concluded
that it is possible to assign the system poles directly through matrix K̃.

Notice that an “original” feedback gain matrix can be obtained as K = K̃P and still
yield the same eigenvalues assignment directly in Acl (since P is just a linear transformation).
The theorem has the direct result that, under full-state feedback, the transient response of a
linear system can be completely determined by including a controller, which is described by
this matrix K. The result is preserved for MIMO systems, although the design of K is not as
straightforward, since it is not unique for a desired set of eigenvalues in this case [Moore, 1975].

Using the parameters from Definition 2.6, the positions of the closed-loop system poles
can be designed given desirable operations, and the matrix K can be hand-designed to meet
these requirements. This method is known as the Pole-Placement method for control synthesis.
Algorithm 1 summarizes a simple procedure of designing an appropriate feedback gain matrix,
given desirable pole positions.

Albeit being a simple formula, Pole-Placement can be used in several applications to yield
controllers capable of achieve performance requirements. Of course, the designer must take
into account that, although the eigenvalue assignment allows for the whole complex plane, a
careless choice of eigenvalues could result in controllers requesting very aggressive or oscillatory
input signals. For this reason, it is necessary some knowledge of the instruments limits before
designing the matrix K.
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Algorithm 1: Pole-Placement Method for SISO Systems

Input : State-space model (A, B) and a set of n desired eigenvalues λ∗.
Output : Feedback gain matrix K.

1 Calculate [α1, α2, ..., αn] as the coefficients of the polynomial ∆(s) = det(sI −A);

2 Let P−1 =
[
B AB A2B · · · An−1B

]


1 α1 · · · αn−1

0 1 · · · αn−2

...
...

. . .
...

0 0 · · · 1

;

3 Let P =
(
P−1

)−1
;

4 Calculate [α̃1, α̃2, ..., α̃n] as the coefficients of the polynomial ∆cl(s) =
∏n
i=1(s− λ∗i );

5 Let K̃ =
[
α1 − α̃1 α2 − α̃2 · · · αn − α̃n

]
;

6 Return K = K̃P ;

3.2 Regulation and Reference Tracking

When discussing controller synthesis it is also necessary to account for the objective that the
device is expected to fulfill. There exists two modes of operation that the controller may require
for the system: regulation and reference tracking. In the case of state-feedback, these two classes
of controllers differs only by what type of reference signal r(t), for an operation in a time interval
t ∈ [t0, tf ], the system is expected to follow.

Regulator Problem

The following statements gives a formal definition of a controller for regulation:

Definition 3.2. (Regulator) If a state-feedback controller has to make a system follows the
reference r(t) = 0, as t → ∞, it is said to be a regulator. In this case, the closed-loop state
equation and equivalent solutions reduces to the following:

State Equation: Lagrange solution:

ẋ(t) = (A−BK)x(t) x(t) = e(A−BK)tx(t0)
. (3.10)

Of course, if the feedback gain matrix impose that all poles of the system are in the left-
half plane, the closed-loop is stable and the natural response will eventually converge to zero
(Theorem 2.10). Therefore, all stable feedback controllers are able to impose regulation to a
system, and the characteristics of the transient response can be fully determined by the matrix
K. These type of controllers are used to make systems goes from nonzero initial states to the
zero-state x(t) = 0 and stays there, meaning that the the controller can also be used to reject
disturbances. Now, one may wonder if this operation is too restrictive in the sense that the
zero-state is not the desirable state in many control objectives. However, it is common to have
linear systems that are linearized versions of nonlinear models, using the approximation from
Theorem 2.2. In these cases, the regulator actually has to impose ∆x(t) = x(t)− xo = 0, i.e.,
drives the system to the steady-state point xo and reject disturbances.
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Example 3.1. For the sake of illustration, considers the first system of (2.60), repeated here:

A =

[
−5.93 0

0.83 −4.70

]
; b =

[
3.81
−1.09

]
. (3.11)

It is easy to verify that this system is controllable, since its controllability matrix is full-rank. In
this case, consider the gains K1 = [−0.993, 1.221], K2 = [0.782, 0.549] and K3 = [0.81, 5.20] to

yield regulator controllers. The correspondent closed-loop systems A
(i)
cl for each i-th controller

are given as:

A
(1)
cl =

[
−2.144 −4.651
−0.257 −3.355

]
; A

(2)
cl =

[
−8.906 −2.092

1.692 −4.093

]
; A

(3)
cl =

[
−9.014 −19.812

1.723 1.014

]
.

(3.12)
Since the open-loop system was obtained by the linearized model in (2.39) for xo = [6.19, 1.09]T

and uo = 3.03, the regulator will impose the zero-state ∆x = 0 which actually means imposing
x(t) = [6.19, 1.09]T as t→∞.

The responses of the three closed-loop systems calculated in Example 3.1 are shown in Fig.
3.2. The simulations assumed initial state ∆x(t) = 0− xo, and the response and input signal
were vertically corrected by xo and uo, respectively. Notice that, as expected, the feedback gains
Ki can effectively change the system behavior, even causing pseudo-periodic responses.
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Figure 3.2: Simulation of three closed-loop systems from Example 3.1 showing the input signal
(left) and state responses (right).

Reference Tracking Problem

In contrast, the control objective could be to follow a non-constant signal r(t), or to follow
a constant signal different from the zero-state, giving rise to the tracking or servomechanism
controllers. A more complete discussion is needed in such cases, since there is a possibility that
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state-feedback is not capable of actually perform the tracking. To understand this question,
consider, for simplicity, that the system must follow a constant reference r(t) = a. Consider,
now, an Input-Output conversion of a closed-loop SISO State-Space model, which from (3.9)
directly results in the transfer function:

G(s) =
Y (s)

R(s)
=

β1s
n−1 + β2s

n−2 + · · ·+ βn−1s+ βn

sn + α̃1sn−1 + α̃2sn−2 + · · ·+ α̃n−1s+ α̃n
. (3.13)

From that formulation it is clear that the response Y (s) = G(s)R(s) will yield a perfect
tracking if G(s) = 1. Moreover, if the system has to track asymptotically track this reference,
this operation can be evaluated as time t → ∞ or, equivalently, as the frequency s → 0.
Plugging this limit in the transfer function implies that a perfect tracking is always possible if
G(0) = βn/α̃n = 1, which is not guaranteed a priori. A possible solution is to transform the
reference with as r̃(t) = Fr(t), so that Y (s) = G(s)R̃(s) = G(s)FR(s), resulting that:

G(0)F = 1⇒ F =
α̃n

βn
, (3.14)

which allows for perfect asymptotically tracking in all cases but when βn = 0. This same
reasoning can easily be extended to MIMO systems (the gain F turns into a matrix). In the case
of non-constant references, the same intuition could still be used, but the design of F becomes
more complex since it would be clearly time-varying. This, however, allows for the definition of
tracking controllers.

Definition 3.3. (Tracking Controllers) If a state-feedback controller has to make a system track
any step reference r(t) 6= 0, as t→∞, it is said to be a tracking controller. In this case, one
has to apply the feedforward gain F to adapt the reference as r̃(t) = Fr(t), resulting in the
following closed-loop state equation and equivalent solution:

State Equation: Lagrange solution:

ẋ(t) = (A−BK)x(t) +BFr(t) x(t) = e(A−BK)tx(t0) +
∫ t
t0
e(A−BK)(t−τ)BFr(τ)dτ

.

(3.15)

Despite being a feasible solution, there are still problems with this definition of tracking
controllers. For instance, if the system is subject to a constant additive disturbance, which has
not been included in the model, the resulting operation will not yield a perfect tracking.

The problem of the previous formulation for a tracking controller is that it is not robust to
actions that happens outside the model. A direct cause of this is the fact that the feedforward
gain F does not benefit from the real-time corrective action of the state-feedback, but rather
is calculated off-line using the model properties. Therefore, a way to ensure a more robust
operation could be to insert real-time information about the tracking error directly to the
feedback corrective action. With this motivation, a new formulation of the tracking controller is
given below.

Definition 3.4. (Robust Tracking Controllers) Consider a State-space system and augmented
state xa : R→ Rp defined by:

xa(t) =

∫ t

0
r(τ)− y(τ)dτ =⇒ ẋa(t) = r(t)− y(t). (3.16)
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A robust tracking (or servo) controller, defined by the gain K̃ =
[
K Ka

]
, for K ∈ Rr×n and

Ka ∈ Rr×p, operates on the following augmented version of the original system:

[
ẋ(t)

ẋa(t)

]
=

[
A−BK −BKa

−C 0

][
x(t)

xa(t)

]
+

[
0

Ip

]
r(t)

y(t) =
[
C 0

] [ x(t)

xa(t)

] (3.17)

or, equivalently: {
˙̃x(t) = Ãclx̃(t) + B̃r(t)

y(t) = C̃x̃(t)
. (3.18)

Since the augmented state xa(t) represents an integral of the tracking error until a time t,
this formulation is usually characterized as imposing “integral action” to the controller. The
schematic in Fig. 3.3 illustrates how an integrator can be included to the block diagram of the
control loop.

Open-Loop SystemIntegral Action

∫
Ka B

∫
C

A

K

Controller

r + xa − u + ẋ x y

+−−

Figure 3.3: Block diagram of a state-feedback closed-loop system with integral action.

Notice that state-equation for closed-loop of this new augmented system is resulting from

Ãcl =

[
A 0
−C 0

]
−
[
BK BKa

0 0

]
=

[
A 0
−C 0

]
−
[
B
0

] [
K Ka

]
= Ã− B̃K̃. (3.19)

In this case, it must be discussed whether the new gain K̃ still preserves the eigenvalue assignment
property of a state-feedback gain defined on the original State-Space model.

Theorem 3.3. If the SISO system described by (A, B) is controllable and its transfer function
G(s) has no zero at s = 0, then the eigenvalues of the augmented matrix Ã can be assigned
arbitrary by the feedback gain K̃.

Proof. Consider a SISO controllable system. After the augmentation, the new controllability
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matrix C̃ ∈ R(n+p)×nr is calculated as:

C̃ =

[
B AB A2B A3B · · · An−1B
0 −CB −CAB −CA2B · · · −CAn−2B

]

=



1 −α1 −α2
1 − α2 −α1(α2

1 − α2) + α2α1 − α3 · · · ∆1(α1, ..., αn)
0 1 −α1 −α2

1 − α2 · · · ∆2(α1, ..., αn)
0 0 1 −α1 · · · ∆1(α1, ..., αn)
0 0 0 1 · · · ∆3(α1, ..., αn)
...

...
...

...
. . .

...
0 0 0 0 · · · ∆n(α1, ..., αn)
0 −β1 −β1α1 − β2 −β1(α2

1 − α2) + β2α1 − β3 · · · ∆n+1(α1, ..., αn)


,

(3.20)

where ∆i(α1, ..., αn) is a polynomial used to save space in the equations. By inspection of
this matrix, it is possible to discover a pattern between the rows. Since elementary operations
between the rows r1, r2, ..., rn do not change the matrix row rank, the last row of the matrix
can be transformed as rn = rn + rn−1βn−2 + rn−2βn−3 + · · ·+ r2β1. The result is the triangular
matrix in the form:

C̃ =



1 −α1 −α2
1 − α2 −α1(α2

1 − α2) + α2α1 − α3 · · · ∆1(α1, ..., αn)
0 1 −α1 −α2

1 − α2 · · · ∆2(α1, ..., αn)
0 0 1 −α1 · · · ∆3(α1, ..., αn)
0 0 0 1 · · · ∆4(α1, ..., αn)
...

...
...

...
. . .

...
0 0 0 0 · · · ∆n(α1, ..., αn)
0 0 0 0 · · · βn


. (3.21)

Since G(s) has no zeros at s = 0, then βn 6= 0, meaning that C̃ is nonsingular and, therefore
has full row rank. From this it can be concluded that the augmented system (Ã, B̃) is controllable
and, from Theorem 3.2, the eigenvalues of Ã can be assigned anywhere in the complex plane.

Although the result was only shown for the SISO case, the main intuition still holds in the
MIMO case, but the equations become cumbersome. Basically, if the augmented matrices are
controllable, the robust tracking can be achieved by the same formulation.

A possible intuition on how this system performs robust tracking and disturbance rejection
can be taken from the fact that the first row of (3.19) has the same form of a basic regulator,
except from the term BKa which is a linear function of xa(t). Because of this, a control action
will always be requested whenever xa(t) 6= 0, i.e., when there is an error between the reference
and the output signal. When xa(t) = 0, the equation reduces to a simple regulator. A more
quantitative analysis on tracking State-Space controllers can be found in [Franklin et al., 2018].

Example 3.2. For the sake of illustration, consider the same system used in (3.11). Unfortu-
nately, the augmented version of this single-input multiple-output (SIMO) formulation is not
controllable. However, the SISO version obtained by letting C =

[
0, 1
]

obeys Theorem 3.3 and
has no zeros at s = 0. Thus, a robust tracking controller can be designed by state-feedback.
Consider the gains K̃1 = [−0.99, 1.22,−25], K̃2 = [0.78, 0.55,−25] and K̃3 = [0.81, 5.20,−50].
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The correspondent closed-loop systems tildeA
(i)
cl for each i-th controller are given as:

Ã
(1)
cl =

−9.707 4.65 −95.25
1.92 −6.04 27.45

0 −1.00 0

 ; B̃ =

0
0
1



Ã
(2)
cl =

−2.94 2.09 −95.25
−0.02 −5.30 27.46

0 −1.00 0

 ; B̃ =

0
0
1



Ã
(3)
cl =

−2.84 19.81 −190.50
−0.06 −10.41 54.91

0 −1.00 0

 ; B̃ =

0
0
1



. (3.22)

Some simulations of closed-loop systems for this system to track are shown in Fig. 3.4 for a
non-constant reference consisting of a sequence of step signals.
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Figure 3.4: Simulation of three closed-loop systems showing the input signal (left) and state
response (right) for reference tracking. The reference signal is indicated by the black dashed line.

3.3 Deterministic State Observers

Until now, the state feedback was discussed from the perspective that the device has direct
access to the real value of all the states of the system. This assumption is unrealistic, since the
states are only observed through the output signal y(t), through the matrix C, which itself
is not assumed to be always equal to the identity matrix. In practice, this means that some
states could not be measured, due to technical difficulties or economic reasons, or that the
instrumentation available is not perfect, and the observations are prone to deviate from the real
value. Since the state-vector is necessary for the state-feedback to compute the input to the
system, this section discusses how to develop devices that can reconstruct the states from the
observations.

A device that determines a state-vector x(t) from the output signal y(t) is known as state
observer, or state estimator in some cases. Amongst several possible techniques, a practical and
popular one is the Luenberger observer, which is defined below.
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Definition 3.5. (Luenberger Observer) Given a system in State-Space with output signal
y(t) : R→ Rp and an observer gain L ∈ Rn×p, the estimated state-vector x̂(t) is represented by
the observer system:

˙̂x(t) = Ax̂(t) +Bu(t) +L (y(t)−Cx̂(t)) , (3.23)

or, equivalently:
˙̂x(t) = (A−LC) x̂(t) +Bu(t) +Ly(t). (3.24)

The observer system works as a parallel system that is simulated alongside the actual system,
as illustrate in Fig. 3.5. The expected result is that the observer yields x̂(t) = x(t), as time
t → ∞. Alternatively, it is possible to create a variable e(t) = x(t) − x̂(t) such that, using
(3.24):

ė = x− x̂
= (Ax+Bu)− ((A−LC) x̂+Bu+LCx)

= (A−LC)x− (A−LC) x̂

= (A−LC) (x− x̂)

= (A−LC) e

, (3.25)

which implies that the observer asymptotically tracks the actual state-vector if e(t) = 0 as
t→∞. Analyzing the equation above, it is intuitive to notice that this result can be guaranteed
if all the eigenvalues of matrix Aobs = A−LC have negative real parts, since it implies that the
natural response of ė vanishes and there is no forcing input action to yield forcing response to this
variable (Theorem 2.10). Therefore, a specific gain L could be designed to ensure this condition
and allows the observer to asymptotically track the state-vector with a desired behavior. The
following theorem relates this statement with the choice of a gain L.

Luenberger Observer

Open-Loop System

∫
B C

A

L

u y

+

+ + ˙̂x x̂ −
+

+

Figure 3.5: Block diagram of a State-Space system with Luenberger observer.
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Theorem 3.4. If a system in State-Space representation is observable, then by a Luenberger
observer with gain matrix L ∈ Rn×p the eigenvalues of Aobs = A−LC can arbitrarily be assigned
anywhere in the complex plane, as long as that complex conjugate eigenvalues are assigned in
pairs.

Proof. Consider that a State-Space with matrices (A,C) is observable. From the Duality
Theorem [Chen, 1998], if the pair (A,C) is observable then the pair (AT ,CT ) is controllable. In
this case, it is possible to design a gain matrix K to assign the eigenvalues of Ãobs = AT −CTK
in any desirable points in the complex space. Since the eigenvalues of a matrix are invariant
to the transpose operation, the design of K can also place the eigenvalues of the matrix
(Ãobs)

T = A−KTC. Therefore, making L = KT proves the theorem.

The procedure stated in this proof highlights the similarities between existing closed-loop
observers, such as the Luenberger observer, and closed-loop controllers, such as the state-feedback.
Basically, the same design considerations that concerns state-feedback are important in the
design of the observer gain L. For instance, the eigenvalues of Ãobs = AT − CTK can be
assigned such that the time evolution of the error e(t) has a desirable time constant, damping
coefficient or natural frequency. In conclusion, the state-vector x(t) can be reconstructed by
using an observer gain such that each eigenvalue of Aobs is on the left-half side of the complex
plane.

The only reason to develop an observer is to allow for state-feedback controllers to access
the values of the state-vector, thus being able to calculate an appropriate action to follow the
reference signal. If a controller can only access the estimated state-vector x̃(t), it is possible to
define a State-Space formulation for a closed-loop based on feedback from estimated states given
data from a, possibly non-linear and time-varying, disturbed system.

Definition 3.6. (Feedback from Estimated States) Given a system in State-Space representation
whose state-vector is reconstructed from a Luenberger observer of gain L ∈ Rn×p and input
signal is calculated through state-feedback with gain K ∈ Rn×r, its time evolution can be
represented through the model:{

ẋ(t) = Ax(t)−BKx̂(t) +Br(t)
˙̂x(t) = (A−LC −BK) x̂(t) +Br(t) +LCx(t)

. (3.26)

A schematic for this formulation of feedback from estimated states is shown Fig. 3.6, including
the possibility for integral action. In fact, this schematic summarizes several different control
architectures that includes both feedback action and state estimation, and it will be a reference
whenever this work mentions physical control loops and instrumentation.

Notice, now, that the formulation just defined imposes that the dynamics of the estimated
state x̂(t) is dependent both in K and L, which are arbitrary matrices chosen by the control
designer. This leads to the possible conclusion that the choice of K is now restricted by the
effect that it will produce in the choice of L, which is not true. The following theorem, known
as the Separation Principle, states that design of these two gains are independent.
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Open-Loop SystemIntegral Action

Luenberger Observer

∫
Ka B

∫
C

A

∫
B C

A

L

y

K

Controller

r + xa − u + ẋ x

+−−

+ ˙̂x x̂

−

+

+

+

Figure 3.6: Block diagram of a state-feedback closed-loop system with integral action and
Luenberger observer.

Theorem 3.5. (Separation Principle) Given a system in State-Space with a Luenberger observer
of gain L and state-feedback controller of gain K, the closed-loop eigenvalues contributions of
(A−BK) are independent from those of (A−LC).

Proof. Consider a feedback from estimated states as defined in (3.26). The controller-estimator
system can be rewritten as a single state equation:[

ẋ
˙̂x

]
=

[
A −BK
LC A−LC −BK

]
︸ ︷︷ ︸

Ã

[
x
x̂

]
+

[
B
B

]
︸︷︷︸
B̃

r. (3.27)

Consider, now, the following similarity transformation z(t) = Px(t):[
I 0
I −I

]
︸ ︷︷ ︸

P

[
x
x̂

]
=

[
x

x− x̂

]
=

[
x
e

]
. (3.28)

Since P = P−1, and this is a valid similarity transformation that does not alter the system
eigenvalues, the equivalent system for state z(t) is obtained as:[

ẋ
ė

]
=

[
A−BK −BK

0 A−LC

] [
x
e

]
+

[
B
0

]
r. (3.29)
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Since the system matrix obtained is block triangular, it is possible to conclude that the
system in such configuration has eigenvalues that are separate contributions from the eigenvalues
of (A−BK) and from (A−LC).

The Separation Principle is a nice results that further motivates the topology of Fig. 3.6,
since it explicitly states that the design of the controller and the state observer can be done
separately. Thus, any structure that obeys the state feedback formulation can be used as a
controller and the same is valid for the observer device. In the next chapter, this result will
be explored to motivate the use of more advanced control and state estimation techniques
without having to redefine the analytical tools and intuitions built for traditional state-feedback
controllers from pole-placement methods.

3.4 Properties of State-Feedback Controllers

The last section introduces the first considerations into applying state-feedback in real-world
systems, given limitations on the instruments and uncertainty on the environment. Basically,
a mathematical analysis of such closed-loop systems allows for a full characterization of its
behavior, but the real system will exhibit a different response due to these limitations and,
essentially, due to unmodelled external disturbances. Therefore, it is desirable to anticipate these
variations and discuss the properties of the closed-loop system in the sense of robustness and
stability margins. Since this goal requires that the system response is evaluated in as general
as possible context, the discussion in this section relies on frequency response analysis, which
consider a broader class of input signals: sinusoids of any frequency. Consider the representation
of closed-loop systems shown in Fig. 3.7, which consists of a simplified version of Fig. 3.1 in the
Laplace frequency domain considering only the state response.

G(s)

Open-Loop System

KT

Controller

Dx

Dk

U X +

+

−

+

+

Figure 3.7: Simplified block diagram of a perturbed state-feedback closed-loop.

Using block diagram algebra and Theorem 2.1, it is possible to associate a forward-path
transfer function Gf (s) given as [Anderson and Moore, 1990]:

Gf (s) = −KTG(s) = −KT (sI −A)−1B. (3.30)

Now, it is possible to characterize the properties of this quantity which relates the state-
feedback gain K with the system disturbance Dx(s) and gain disturbance Dk(s). To facilitate
the definitions and discussion, the results are shown for single-state single-input systems, so
Gf (s) is a scalar function, where the extension for n > 1 states is intuitive in most cases. The
first property to be discussed, then, considers the stability of closed-loop feedback controllers.
Consider the following closed-loop stability criterion from a Bode plot visualization.
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Theorem 3.6. (Bode stability criterion) Consider a feedback system whose closed-loop transfer
function is defined, assuming perfect measuring sensors, as:

T (s) =
KG(s)

1 +KG(s)
. (3.31)

The closed-loop system is said to be stable if |G(jωpc)| ≤ 0, where ωpc is the phase crossover
frequency obtained such that ∠G(jωpc) = −180o.

Additionally, it is possible to define a stability criterion through a Nyquist diagram of the
closed-loop system.

Theorem 3.7. (Nyquist criterion) Consider a system with feedforward transfer function as
defined in (3.30). Now, let P and Z be respectively the number of poles of Gf (s) and zeros
of 1 +Gf (s) that are in the right-half plane. In this case, the Nyquist contour shall clockwise
encircle the point s = −1 a number of times N such that N = Z − P .

A detailed proof of both criterion can be found in [Nise, 2015]. The introduction of these
stability evaluation techniques may seem redundant, given that the closed-loop BIBO stability
can still be characterized from Theorem 2.10. However, their graphical nature allows for an
easy understanding of how disturbances can affect the stability of state-feedback systems. For
instance, a system subject to a sinusoidal disturbance of constant magnitude, but with the same
frequency as the natural frequency of the system, will show a response with higher magnitude
for the phase crossover frequency than the one visualized in the Bode plot. This phenomenon
is widely known in Physics as “resonance”. Therefore, the influence of disturbances can inflict
instability to a stable system.

Of course, not all disturbances observed in real operations are strong enough to bring any
reasonable stable controller to an unstable condition. However, depending on the choice of the
gain K, some closed-loop systems can be more prone to these undesired problems than others.
This motivates the discussion on stability margins.

Definition 3.7. (Stability Margins) Given a closed-loop system with transfer function T (s),
the Gain Margin (GM) is defined as a factor of how much a gain can be increased before the
system becomes unstable, and is equated as:

GM =
1

|T (jωpc)|
, (3.32)

where ωpc is the phase crossover frequency such that ∠T (jωpc) = −180o (or the point where a
Nyquist diagram crosses the real axis for −1 < s < 0). In addition, the Phase Margin (PM)
is defined as how much phase lag can be added to T (s) the system becomes unstable, and is
equated as:

PM = ∠T (jωgc), (3.33)

where ωgc is the gain crossover frequency such that |T (jωgc)| = 0dB (or the angle when a
Nyquist diagram crosses the unit circle centered at s = 0).
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Figure 3.8: Stability margins visualizations given Bode plots (left) and Nyquist diagrams (right)
of closed-loop dynamical systems.

A graphical representation of these margins, for both Bode plots and Nyquist diagrams is
shown in Fig. 3.8, for the same system as the one from last figure. If a closed-loop system
has small Gain Margin, it is clear that its stability is not robust to gain uncertainties, while a
small Phase Margins implies that its stability is not robust to time delay uncertainties in the
control actions. From this motivation, the use of high-gain controllers have been a working
example of how to achieve robust control [Khalil, 2005, Mahmoud and Khalil, 2002], but is
usually challenging for the instrumentation in real-world operations. Therefore, the design of
state-feedback gains must account for these quantities, and a trade-off between performance and
robustness is always necessary for this formulation.



48 CHAPTER 3. CONTROLLER SYNTHESIS



Chapter 4

Optimal Control and Estimation

This chapter introduces the vast field of optimal control and optimal estimation of dynamical
systems. The developments are focused in optimizing a cost function that produces an optimal
sequence of control actions to achieve the desired control objective, under some conditions. The
chapter starts by discussing a general formulation of the optimal control problem and then
specializes the formulation to a case of a linear system with quadratic cost functions. After that,
the dual optimal state estimation problem is discussed and a result that merges the optimal
control with the optimal estimation is presented. Finally, the main stability and robustness
properties of the controllers derived in this chapter are accessed.

4.1 Formulation

The last chapter introduced the notion of controller synthesis as an engineering procedure to be
done “by hand” from a designer with some knowledge about the system and the control environ-
ment. This approach, despite being very popular and practical, is rather time-consuming and
demands the designer to consider what are the best pole locations given some hard specifications.
In addition to that, the design techniques previously presented becomes more involving when
applied to MIMO systems. Thus, a more general and automatic procedure to control synthesis
is desirable.

With this motivation, the concept of Optimal Control [Anderson and Moore, 1990, Kirk,
1998, Liberzon, 2012, Bertsekas, 2017] was introduced as an alternative strategy for control-
ling dynamical systems. Optimal controllers determines the necessary action by minimizing a
cost function (or maximizing a reward function). These formulations produces feedback con-
trollers that autonomously requires optimal input signals given a desired objective and possible
restrictions, begin easily generalized to different systems.

Definition 4.1. (Optimal Control) Given a system in State-Space formulation, with state signal
x : R → Rn, and a reference signal r : R → Rn, the input signal u(t) ∈ Rr, for any time t, is
optimal if an optimal control law π∗ : Rn×n×1 → Rr can be found as:

u(t) = π∗(x, r, t) = min
u
J(x, r, t), (4.1)

where J : Rn×n×1 → R is known as a cost function of the states and reference signals.

Note that this optimization can be converted to maximizing a function V (·) by evaluating
V (·) = −J(·). Thus, this document will only refers to optimization as minimizing some cost
function. The problem of finding an optimal control law, or optimal control policy, π∗(·) depends

49
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on the choice of the cost function J(·), and several optimization techniques can be used to
determine the value of u(t) that achieve its minimum. This problem differs from standard
optimization problems because it is dependent of time, there can be a decision variable and it is
constrained by the dynamics of the model and by the optimal policy action. Solutions to this
optimization can be obtained from several methods, however, this work specifically focus on the
concept of Dynamic Programming, first introduced by [Bellman, 1954].

To facilitate the discussion and analysis of optimal controllers, consider a subclass of these
controllers (that is still very general) defined below by a specific choice of functional for the cost
function.

Definition 4.2. (Finite-Horizon Optimal Regulators) Consider a controller setup as in Definition
4.1. A Finite-Horizon Optimal Regulator is defined as any controller whose optimal policy over
a time interval t ∈ [t0, T ] minimizes the cost functional:

J(x,u, t0) =

∫ T

t0

l(x,u, τ)dτ + lf (x, T ), (4.2)

where l(·) : Rn×r×1 → R and lf (·) : Rn → R are, respectively, the trajectory and terminal loss
functions. In the case that t0 = 0, T is also known as the control horizon.

This formulation presents a notion of optimizing for a sequence of control actions [u(t0), · · · ,u(T )]
that can cause a state trajectory [x(t0), · · · ,x(T )], which is optimal given the loss functions.
As will be shown later, this is a very feasible strategy for controllable linear systems. In an
optimization notation, this problem can also be presented as the following program:

minimize
∫ T
t0
l(x,u, τ)dτ + lf (x, T )

s.t. ẋ(t) = f(x,u, t)
u(t) = π(x(t0), · · · ,x(t))

. (4.3)

Now, the discussion turns to how to solve this general problem. In this work, the solution
for the optimal control will follow a dynamic programming formulation. The first necessary
effort, then, is to define an important partial differential equation known as the Hamilton-Jacobi
equation, given below.

Theorem 4.1. (Hamilton-Jacobi equation) Consider a finite-horizon cost function in the form
of Definition 4.2, for a system described by the state-equation ẋ = f(x,u, t), restated as:

V (x,u, t0) =

∫ T

t0

l(x,u, τ)dτ + lf (x(T )) (4.4)

Consider also that the loss l(·) and state function f are smooth on their parameters. Then,
minimizing any functional in the form of V (·) is equivalent to determining the solution of the
Hamilton-Jacobi equation, which is given by the partial differential equation:

∂V ∗

∂t
= −min

u(t)

l(x,u, t) +

[
∂V ∗

∂x

]T
f(x,u, t)

 (4.5)

and the boundary condition:
V ∗(x, T ) = lf (x(T )). (4.6)
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Proof. First of all, consider the cost functional V (·) from (4.4). Minimizing this functional with
respect to the control inputs u(t0), · · · ,u(T ) consists of evaluating the optimal cost:

V ∗(x, t0) = min
u(t0),··· ,u(T )

[∫ T

t0

l(x,u, τ)dτ + lf (x(T ))

]
. (4.7)

Now, consider any t ∈ [t0, T ] and tr ∈ [t, T ]. Since the original control action u(t), · · · ,u(T )
can be obtained through the concatenation of u(t), · · · ,u(tr) and u(tr), · · · ,u(T ), the optimal
cost in this interval can be represented as:

V ∗(x, t) = min
u(t),··· ,u(T )

[∫ T

t
l(x,u, τ)dτ + lf (x(T ))

]
= min
u(t),··· ,u(tr)

{
min

u(tr),··· ,u(T )

[∫ tr

t
l(x,u, τ)dτ +

∫ T

tr

l(x,u, τ)dτ + lf (x(T ))

]}
= min
u(t),··· ,u(tr)

{∫ tr

t
l(x,u, τ)dτ + min

u(tr),··· ,u(T )

[∫ T

tr

l(x,u, τ)dτ + lf (x(T ))

]}
= min
u(t),··· ,u(tr)

{∫ tr

t
l(x,u, τ)dτ + V ∗(x, tr)

}
.

(4.8)

Notice that this is a recursive formula, since the optimal cost V ∗(x, t) depends on V ∗(x, tr),
which itself is an optimal cost for the future time tr ≥ t. Without loss of generalization, let
tr = t+ δt, where δt is a small number. Since l(·) is a smooth function, the right-hand side of
the recursive form above can be expanded by a Taylor series expansion:

V ∗(x, t) = min
u(t),··· ,u(t+δt)

{
l(x,u, t+ δt)δt

+V ∗(x, t) +

[
∂V ∗(x, t)

∂x

]T
dx(t)

dt
δt+

∂V ∗(x, t)

∂t
δt+O(δt)2


, (4.9)

where O(δt)2 denotes high order terms. Since the terms V ∗(x, t) and (∂V ∗/∂t)δt do not depend
on u(t), they can be disregarded of the minimization. Rearranging the terms and substituting
dx/dt = f(x,u, t) results in:

∂V ∗

∂t
(x, t) = − min

u(t),··· ,u(t+δt)

l(x,u, t+ δt) +

[
∂V ∗(x, t)

∂x

]T
f(x,u, t) +O(δt)2

 . (4.10)

Finally, letting δt→ 0 yields:

∂V ∗

∂t
= −min

u(t)

l(x,u, t) +

[
∂V ∗

∂x

]T
f(x,u, t)

 . (4.11)

To prove the theorem it remains to derive the boundary condition. This result, however, is
direct from the form of the cost function, since V ∗(x, T ) = lf (x(T )) can not be changed through
any more control action inside the time horizon.

The Hamilton-Jacobi equation implies that finite-horizon optimal controllers can be optimized
in a recursive manner, starting from the boundary condition at t = T to the beginning of the
horizon at t = t0. This results from the fact that the last action u(T ) depends only on lf (·), so
it can be directly calculated for a desired final state x(T ) and used to calculate the remaining
optimal costs backward in time. This recursive property, directly evidenced in (4.8), is a statement
of the Bellman’s Principle of Optimality [Bellman, 1954] and, for this reason, the Hamilton-Jacobi
equation in the context of optimal control theory is known as the Hamilton-Jacobi-Bellman
(HJB) equation. An illustration of this principle is shown in Fig. 4.1
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Figure 4.1: Illustration of the Bellman’s Principle of Optimality for a system with discrete set
of states for a discrete time evolution. Each column represents a time instance and each node
represents a possible state. The straight lines represents state transitions given an action with
associated costs, whereas the curves represents the trajectory from that state to the terminal
state with associated optimal cost. The optimal trajectory between the initial and terminal
state is shown in red.

4.2 Linear Quadratic (LQ) Controllers

The last section introduced a general condition for solving a finite-horizon optimal control
problem. Developing an analytical solution of that condition for any arbitrary loss function l(·)
and state-equation f(·) is usually intractable. However, there is a choice of loss function that,
under a linear system, allows for a nice closed-form solution to the Hamilton-Jacobi-Bellman
equation. This defines the popular class of optimal controllers known as the Linear Quadratic
Controllers. Since these controllers are realizations of state-feedback controllers, this section
discuss the two possible control operations presented in the last chapter, namely regulation and
reference tracking.

Regulation

Definition 4.3. (Linear Quadratic Regulator) Given a linear State-Space system in the form:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
. (4.12)

A Linear Quadratic Regulator (LQR) for this system is an optimal controller defined by the
quadratic cost function:

J(x,u, t0) =

∫ T

t0

(
xTQx+ uTRu

)
dt+ xT (T )Qfx(T ), (4.13)

where is assumed thatQ,Qf � 0 andR � 0 are matrices penalizing, respectively, the state-vector
magnitude and the control effort.

The LQR optimal controller was a major breakthrough in the development of optimal control
theory [Bryson, 1996], and has been a foundation for more complex systems ever since. From
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an engineering point of view, this choice of cost function has the advantage that it breaks the
controller design to simply choose matrices Q and R as a trade-off between performance and
actuator restrictions. From a mathematical point of view, the cost function has the advantage
of being a quadratic function of the state and input signals, which is desirable since quadratic
optimization problems have been widely studied in the literature [Boyd and Vandenberghe, 2004].
Now, it is necessary to develop a solution for the Hamilton-Jacobi equation in the light of this
formulation. First of all, consider the following theorem.

Theorem 4.2. Consider a continuous cost function V : Rn×r×1 → R given by the LQR cost
function defined in Definition 4.3 for a linear system. The optimal cost V ∗(x, t) has the quadratic
form:

V ∗(x, t) = xT (t)P (t)x(t) (4.14)

for any (possibly symmetric) matrix P (t) of appropriate dimensions. More precisely, the optimal
cost V ∗(x, t) satisfies the necessary and sufficient conditions for a quadratic function given as,
for any λ ∈ R:

V ∗(λx, t) = λ2V ∗(x, t) (4.15)

V ∗(x1, t) + V ∗(x2, t) =
1

2
(V ∗(x1 + x2, t) + V ∗(x1 − x2, t)) . (4.16)

Proof. Since V ∗(x, t) is the minimum value of V (x,u∗, t), given an optimal input u∗(t) for
t ∈ [t, T ], then any deviation λ ∈ R in the parameters (x, u(t)) will result in a greater value of
the cost. A direct result from this and the fact that V (x,u, t) is a quadratic function of x(t)
and u(t) is that:

V ∗(x, t) ≤ V (λx, λu∗, t) = λ2V ∗(x, t) ≤ λ2V (x, λ−1u∗, t) = V ∗(x, t), (4.17)

or, simply:
V ∗(x, t) ≤ λ2V ∗(x, t) ≤ V ∗(x, t), (4.18)

which directly implies V ∗(x, t) = λ2V ∗(x, t) and establishes (4.15). Similarly:

V ∗(x1, t) + V ∗(x2, t) =
1

4
(V ∗(2x1, t) + V ∗(2x2, t))

≤
1

4

(
V (2x1,u

∗
x1+x2 + u∗x1−x2 , t) + V (2x2,u

∗
x1+x2 − u

∗
x1−x2 , t)

)
=

1

2

(
V (x1 + x2,u

∗
x1+x2 , t) + V (x1 − x2,u

∗
x1−x2 , t)

)
=

1

2
(V ∗(x1 + x2, t) + V ∗(x1 − x2, t)) ≤ V ∗(x1, t) + V ∗(x2, t),

(4.19)

which implies V ∗(x1, t) + V ∗(x2, t) = (1/2) (V ∗(x1 + x2, t) + V ∗(x1 − x2, t)) and establishes
(4.16). Therefore, the optimal cost function has a quadratic form V ∗(x, t) = xT (t)P (t)x(t).

This theorem shows that the fact that the cost function V (x,u, t) is quadratic directly
implies that the optimal cost V ∗(x, t) is also quadratic. Therefore, it is possible to define the
optimal action u∗(t) that produce this optimal cost by evaluating its relationship with the matrix
P . Since the quadratic cost just evaluated is defined for a finite-horizon optimal controller, it
has to obey the condition imposed by the Hamilton-Jacobi equation, and the optimal controller
can be solved as shown in the following theorem.
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Theorem 4.3. (LQR Control Action) Given a Linear Quadratic Regulator as defined in Defini-
tion 4.3, the optimal action produced by this optimal controller at any time t ∈ [t0, T ] is given
by:

u∗(t) = −R−1BTP (t)x(t), (4.20)

where P (t) is the solution of the matrix Riccati differential equation:

− Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q, (4.21)

with terminal condition P (T ) = Qf .

Proof. Consider the Hamilton-Jacobi equation from (4.5) restated below for a quadratic loss
function l(x,u, t and a linear system with state equation f(t) as given by Definition 4.3:

∂(xTPx)

∂t
= −min

u(t)

xTQx+ uTRu+

[
∂(xTPx)

∂x

]T
(Ax+Bu)


xT Ṗ x = −min

u(t)

{
xTQx+ uTRu+ (2xTP ) (Ax+Bu)

} , (4.22)

where, without loss of generalization, P (t) was assumed to be symmetric. Because of the
quadratic nature, it is possible to calculate the minimum of the right-hand side of the equation
by taking its derivative with respect to the control action and equating it to zero:

0 =
∂

∂u(t)

(
xTQx+ uTRu+ (2xTP ) (Ax+Bu)

)
0 = 2uT (t)R+ (2xT (t)P (t))B

u(t) = −R−1BTP (t)x(t)

. (4.23)

To solve for P first note that the following identity can be found by completing the squares:

xTQx+ uTRu+ (2xTP ) (Ax+Bu) =(u+R−1BTPx)TR(u+R−1BTPx)

+ xT (ATP + PA− PBR−1BTP +Q)x
. (4.24)

Thus, substituting this identity and substituting the optimal control action results in the matrix
Riccati equation:

xT Ṗ x = xT (ATP + PA− PBR−1BTP +Q)x

Ṗ = ATP + PA− PBR−1BTP +Q
. (4.25)

Finally, the terminal condition is direct from the fact that V ∗(x, T ) = xT (T )Qfx(T ).

A closed-form solution for the LQR problem makes this controller a very appealing solution
in several applications, since not only it is an optimal controller but the action can be calculated
analytically. Several others optimal controllers may offer performance improvements, but usually
depends on iterative optimization procedures, which can be computationally expensive to
calculate for high-dimensional systems. Furthermore, the time complexity of the LQR control
action computation is governed by the solution of the Riccati differential equation which can be
done very efficiently [Davison and Maki, 1973,Opanuga et al., 2015].
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Now, consider the optimal control action u∗(t). Applying this action to a linear system in
State-Space representation results in the following state-equation:

ẋ(t) = Ax(t) +B
(
−R−1BTP (t)x(t)

)
=
(
A−BR−1BTP (t)

)
x(t)

= (A−BK(t))x(t)

. (4.26)

This formulation indicates that the Linear Quadratic Regulator solution follows the exact
same form of a general state-feedback regulator, represented by the linear but time-variant
feedback system Acl(t) = (A−BK(t)). Notice, also, that both the computation of K(t) and
P (t) does not explicitly depends on x(t), meaning that, for a specific control horizon, they can
be calculated off-line and then provided to the controller actuator for the on-line operation.
For this reason, despite being a closed-loop controller with corrective action, the LQR can be
considered an open-loop optimizer, since the optimization solution itself does not depend on the
state signal, but only on the system dynamical model.

Reference Tracking

As discussed in the previous chapter, the class of regulation controllers are broad but still
restricted to a zero-state reference signal. To expand the range of application for the optimal
controller just derived, it is possible to introduce integral action to the feedback.

Definition 4.4. (Linear Quadratic Servo) Given a linear State-Space system represented by
matrices (A,B,C,D), augmented with state ẋa(t) = r(t)−Cx(t):

[
ẋ(t)

ẋa(t)

]
=

[
A 0

−C 0

]
︸ ︷︷ ︸

Ã

[
x(t)

xa(t)

]
︸ ︷︷ ︸
x̃(t)

+

[
B

0

]
︸︷︷ ︸
B̃

u(t) +

[
0

I

]
r(t)

y(t) =
[
C 0

] [ x(t)

xa(t)

] . (4.27)

A Linear Quadratic Servo (LQ-Servo) for this system is an optimal controller defined by the
quadratic cost function:

J(x,u, t0) =

∫ T

t0

(
x̃T Q̃x̃+ uTRu

)
dt+ x̃Q̃f x̃(T ), (4.28)

where is assumed that Q̃, Q̃f � 0 andR � 0 are matrices penalizing, respectively, the state-vector
magnitude and the control effort.

As before, the integral action turns the tracking problem into a regulation problem. In
this case, the optimal controller will try to regulate towards a zero-state for xa(t), yielding a
zero error between the output y(t) and reference signal r(t). The new p diagonal entries of
the augmented matrix Q̃ can be interpreted as weights penalizing the state deviation from the
reference signal. The solution for this controller is the same as the one derived in Theorem 4.3,
with A = Ã and B = B̃. The resulting control action is equal to:

u(t) = K̃(t)x̃(t) =
[
K(t) Ka(t)

] [ x(t)
xa(t)

]
. (4.29)



56 CHAPTER 4. OPTIMAL CONTROL AND ESTIMATION

Infinite-Horizon LQ Controllers

To conclude the section, it is also worth mentioning that, for the LQR cost function, it is possible
to determine an optimal controller for an infinite-horizon operation, that is, when T →∞. The
fact that the control horizon is now infinite results in a stationary state-feedback gain K, as
stated below.

Theorem 4.4. (Infinite-Horizon LQR) Consider a Linear Quadratic Regulator as defined in
Definition 4.3, but with T =∞. The optimal control action produced by this optimal controller
at any time t ∈ [t0,∞] is given by:

u∗(t) = −Kx(t) = −R−1BTPx(t), (4.30)

where K = R−1BTP and P is the solution of the matrix algebraic Riccati equation:

0 = ATP + PA− PBR−1BTP +Q. (4.31)

A detailed proof of this result can be found in [Anderson and Moore, 1990]. The possibility
for an infinite-horizon LQR is desirable in the sense that it doesn’t restrict the operation to a
fixed time interval, however, the resulting optimal controller suffers from a worst performance
when compared to finite-time horizon controllers.

4.3 Optimal State Estimators

The state-vector x(t) is a necessary information to calculate u(t) in state-feedback controllers,
but may also be inaccessible in practice. In Chapter 3, a deterministic observer, namely the
Luenberger observer, was derived to deal with this problem. Despite being possible to utilize
the Luenberger observer together with optimal controllers, this method suffers from the same
design limitations of the Pole-Placement method, since they are dual problems. Therefore, this
section develops an optimal state estimation approach which, from the estimation nature of the
problem, relies on a statistical interpretation of the dynamical system and its observations.

General State Estimators

First of all, consider a system perturbed by disturbances in the state-response and in the
measurements, respectively w : R→ Rn and v : R→ Rp. This configuration is illustrated at Fig.
4.2. If these disturbances are assumed to be zero-mean Gaussian variables, i.e., wk ∼ N (0,Qkf )
and vk ∼ N (0,Rkf ) where Qkf and Rkf are covariances matrices of appropriate sizes, then it
is possible to motivate a stochastic formulation of the linear State-Space model. For the sake of
simplicity, the discussion is focused on the discrete-time case.

Definition 4.5. (Stochastic Discrete-Time State-Space) Given an additive process noise variable
wk ∼ N (0,Qkf ) with covariance Qkf ∈ Rn×n and an additive measurement noise variable
vk ∼ N (0,Rkf ) with covariance Rkf ∈ Rp×p, the stochastic discrete-time State-Space model is
given by the equations: {

xk+1 = Adxk +Bduk +wk

yk = Cdxk + vk
, (4.32)

for the initial condition x0 ∼ p(x0).
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Figure 4.2: Block diagram of a stochastic discrete State-Space system.

With this formulation, the noise variables can actually represent both the effect of external
disturbances and the model uncertainty. This is important because dynamical models, even
those developed according to a first-principle methodology, are not the true representation of
the actual dynamical system or process. The motivation for a discussion of only a discrete
State-Space model is to facilitate the interpretation of the statistical properties of the model.

A direct result from Definition 4.5 is that, since wk and vk are random variables, xk and
yk are also random variables. More precisely, since the noises variables are assumed to have
a Gaussian distribution, both variables xk ∼ N (µxk ,Σxk) and yk ∼ N (µyk ,Σyk) are also
Gaussian, where µxk ,µyk are their respective mean vectors and Σxk ,Σyk are the respective
covariance matrices. This is because the Gaussian distribution is closed to linear operations.
For this reason, each state and output trajectory over a discrete time interval is a collection
of time-indexed random variables following the Gaussian distribution, i.e., a stochastic process
known as a Gaussian Process [Rasmussen and Williams, 2006].

Definition 4.6. (Gaussian Process) Given a Gaussian process defined as a collection of random
variables:

X = {xk ∼ N (µxk
,Σxk

); k ∈ [0, 1, · · · ,K]} . (4.33)

In the case that the variables represents states of a causal system, the joint probability of the
random variables can be modeled as:

p(X) = p(x0,x1, · · · ,xK) =
K∏
k=0

p(xk|xk−1, · · · ,x1,x0). (4.34)

The defined joint probability p(x0, · · · ,xK) is interpreted as the probability of occurring
a specific state trajectory. The conditional probability p(xk|xk−1, · · · ,x0) states that the
probability associated with a random state variable xk can be conditioned on the state trajectory
(xk−1, · · · ,x0) from the previous time instants. These two probabilities can be related through
the well-known Chain Rule of Probability, which, in the context of stochastic processes, is a
realization of the Markov Property [Stratonovich, 1968]. A nice property of Gaussian distributions,
in this context, is that the joint and condition distribution of Gaussian random variables are
still Gaussian [Ross, 2010].
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Kalman Filter

The dynamic response xk+1 of a system for a time instant k + 1, given its trajectory until the
actual state xk, is given by the conditional probability p(xk+1|xk, · · · ,x1,x0). One can assume,
however, that the an actual state stores enough information from the state trajectory until that
point, that is possible to determine the next state response directly through its probability.
Therefore, the conditional probability could be restated as:

p(xk+1|xk, · · · ,x1,x0) = p(xk+1|xk). (4.35)

A process that exhibits this property is known as a First-Order Markov process. With this
formulation, it is always possible to marginalize the probability distribution of a random variable
xk+1 given the initial state x0, which are related through the equation:

p(xk+1) = p(xk+1|xk)p(xk|xk−1) · · · p(x1|x0)p(x0) = p(x0)

k∏
i=0

p(xi+1|xi). (4.36)

Combining this assumption with Definition 4.6, in order to describe a Gauss-Markov Process,
and using the model from Definition 4.5 it is possible to describe a stochastic dynamical system
as the following probabilistic State-Space model.

Definition 4.7. (Controlled Hidden Markov Model) Given a stochastic State-Space model as
in Definition 4.5, and assuming the Markov property, a Controlled Hidden Markov Model for
this dynamical system at a time instant k is defined through the two distributions:{

p(xk|xk−1,uk−1) (Transition Distribution)

p(yk|xk) (Emission Distribution)
, (4.37)

for the initial condition given by p(x0). Furthermore, since the noises wk and vk are zero-mean
Gaussian noises, these distributions are modeled as the Normal conditional distributions:{

p(xk|xk−1) = N (xk|Axk−1 +Buk−1,Qkf )
p(yk|xk) = N (yk|Cxk,Rkf )

. (4.38)

A Hidden-Markov Model is a statistical interpretation of dynamical systems that is well-
known in the literature [Barber, 2012]. An illustration of the dependence between these variables
as a graphical model is depicted in Fig. 4.3. Notice that, in this formulation, the state-vector
xk actual value is never known (since it is a latent variable), but can be observed through the
emission variable yk, under the assumption that system model is perfectly known. This raises
the problem of state estimation as a common inference problem known as the filtering, which
consists on determining statistically the actual value of xk given the observations y0, · · · ,yk
and control actions u0, · · · ,uk. Thus, the state can be obtained through the distribution:

p(xk|yk,yk−1, · · · ,y0,uk−1,uk−2, · · · ,u0), (4.39)

from which a representative value, such as the expected value E [p(xk|yk, · · · ,y0,uk−1, · · · ,u0)]
can be selected.

There are several approaches to solve the filtering and other related problems in statistical
state estimation [Särkkä, 2013], but the most popular method has been the Kalman filter,
presented in the seminal paper [Kalman, 1960a]. The discrete formulation for a linear Kalman
Filter is given below.
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Figure 4.3: A Controlled Hidden Markov Model for a discrete-time system, where the shaded
boxes indicates that the inputs are not random variables.

Theorem 4.5. (Kalman Filter) Given a Controlled Hidden Markov Model as in Definition
4.7 and initial state distribution x0 ∼ N (x̄0,P0), the filtering distribution can be solved in
closed-form as:

p(xk|yk, · · · ,y0,uk−1, · · · ,u0) = N (x̄k,Pk), (4.40)

where x̄k, which denotes the mean of xk, and covariance Pk are recursively computed through
the prediction and update steps below.

• Prediction Step:

ˆ̄xk = Ax̄k−1 +Buk−1,

P̂k = APk−1A
T +Qkf .

(4.41)

• Update Step:

Kk = P̂kC
T (Rkf +CP̂kC

T )−1,
x̄k = ˆ̄xk +Kk(yk −C ˆ̄xk),

Pk = P̂k −Kk(Rkf +CP̄kC
T )KT

k .

(4.42)

Proof. Consider the transition and emission distributions given as:{
p(xk|xk−1) = N (xk|Ax̄k−1 +Buk−1,Qkf )
p(yk|xk) = N (yk|Cx̄k,Rkf )

. (4.43)

Consider, now, the distribution of (xk−1,xk) conditioned on measurements (y0,y1, · · · ,yk−1).
Since the joint and condition distributions of a Gaussian are themselves Gaussian, this density
can be expressed as:

p(xk,xk−1|y0,y1, · · · ,yk−1) = p(xk|xk−1)p(xk−1|y0,y1, · · · ,yk−1)

= N (xk|Ax̄k−1 +Buk−1,Qkf )N (xk−1|x̄k−1,Pk−1)

= N
([
xk−1

xk

]∣∣∣∣ [ x̄k−1

Ax̄k−1 +Buk−1

]
,

[
Pk−1 Pk−1A

T

APk−1 APk−1A
T +Qkf

])
.

(4.44)

Marginalizing the joint distribution, it is possible to obtain the distribution of xk conditioned
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in the measurement history as:

p(xk|y0,y1, · · · ,yk−1) = N (Ax̄k−1 +Buk−1︸ ︷︷ ︸
ˆ̄xk

,APk−1A
T +Qkf︸ ︷︷ ︸

P̂k

), (4.45)

which completes the prediction step of the Kalman filter. For the update step, consider the joint
distribution between (xk,yk), the actual state and actual measurement, which applying Lemma
A.1 results in:

p(xk,yk|y0,y1, · · · ,yk−1) = p(yk|xk)p(xk|y0,y1, · · · ,yk−1)

= N (yk|Cx̄k,Rkf )N (xk| ˆ̄xk, P̂k)

= N
([
xk
yk

]∣∣∣∣ [ ˆ̄xk
C ˆ̄xk

]
,

[
P̂k P̂kC

T

CP̂k CP̂kC
T +Rkf

])
.

(4.46)

Therefore, using Lemma A.2, the filtering distribution can be obtained as:

p(xk|yk,y0,y1, · · · ,yk−1) = N (xk|x̄k,Pk), (4.47)

where x̂k and Pk are the computations of the update step, given as:{
x̄k = ˆ̄xk + P̂kC

T (Rkf +CP̂kC
T )−1(yk −C ˆ̄xk)

Pk = P̂k − P̂kCT (Rkf +CP̂kC
T )−1CP̂k

. (4.48)

Finally, making Kk = P̂kC
T (Rkf +CP̂kC

T )−1 concludes the proof.

Notice that the Kalman filter solution implies that an “open-loop” estimation of the mean of
the states, ˆ̄xk, can be corrected by the equation:

x̄k = ˆ̄xk +Kk(yk −C ˆ̄xk), (4.49)

which, by expanding ˆ̄xk, results in a similar state-equation expression for a system with a
deterministic observer as defined earlier, but for a time-varying gain Kk:

x̄k = Ax̄k +Buk +Kk(yk −C ˆ̄xk)

= (A−KkC) x̄k +Buk +Kkyk
. (4.50)

Notice that, despite the similarity with Luenberger observers, the Kalman gain has the
advantage that the gain matrix Kk is not resulting from a designer procedure but rather from
solving an inference problem whose only additional information needed are the covariances Qkf

and Rkf , which can be assumed or estimated.

Controller-Estimator Duality

In addition to that, it can be shown that the recursive steps that solves the filtering problem are
also responsible for iteratively minimizing the trace of the covariance matrix Pk, which is given
as:

Pk = E
[
(xk − x̄k)(xk − x̄k)T

]
. (4.51)

Since this method minimizes some cost function, it is indeed an optimal estimator. In fact, the
Kalman filter can be formulated through an optimal control formulation, which motivates the
development of a continuous-time version of this estimator, as shown below.



4.4. LINEAR QUADRATIC GAUSSIAN (LQG) 61

Theorem 4.6. (Kalman-Bucy Filter) Consider a continuous-time State-Space linear system
subject to additive process noise variable wk ∼ N (0,Qkf ) and measurement noise variable
vk ∼ N (0,Rkf ), where the covariances Qkf ∈ Rn×n and Rkf ∈ Rp×p represents the power
spectral density of the noises. In this case, for an estimated state x̄(t) at time t, the error
covariance:

J(x, x̄, t) = E
{

[x(t)− x̄(t)][x(t)− x̄(t)]T
}

(4.52)

is minimized by x̄(t) obtained through the system:

˙̄x(t) = Ax̄(t) +Bu(t) +Ke(t) (y(t)−Cx̄(t)) , (4.53)

where Ke(t) = Pe(t)CR
−1, being Pe(t) the solution of the Riccati differential matrix equation:

Ṗe(t) = APe(t) + Pe(t)A
T − Pe(t)CTR−1

kfCPe(t) +Qkf , (4.54)

with initial condition Pe(t0) = E
{

[x(t0)− x̄(t0)][x(t0)− x̄(t0)]T
}

for t0 > −∞.

A detailed proof of this theorem can be found in [Crassidis and Junkins, 2011]. The
formulation of an optimal state estimator further emphasizes the duality between controllers and
observers. Notice that the gain Ke(t) of a Kalman-Bucy filter depends on a matrix Pe(t) that
solves the exact same Riccati differential equation as the one in Theorem 4.3, but forward in time
for matrices AT and CT instead of A and B. Notice, however, that these filters are not limited
to a terminal time T , since the boundary condition only requires information on the initial time
t0 > −∞, which implies that they could also be used in forward infinite-horizon operations.
Another direct result of the duality is that is possible to derive an estimator considering t0 → −∞,
which, as in Theorem 4.4, results in a time-invariant filter with gain Ke.

4.4 Linear Quadratic Gaussian (LQG)

This chapter presented formulation for controllers and state estimators that are optimal, in
the sense that they minimize some cost function based on information about the model and
measurements. In the previous chapter, the Theorem 3.5 stated that a controller and an estimator
can be designed separately, and a resulting control by feedback of estimated states is always
feasible. In this section, a similar configuration is shown for optimal control and estimation
operations, as depicted in Fig. 4.4.

The control configuration that connects an optimal control action of a Linear Quadratic
Regulator together with the estimation states from a Kalman filter (or Kalman-Bucy filter) is
know as a Linear Quadratic Gaussian (LQG) controller. Since the controller is independent of
the estimator, it is also possible to include integral action to the configuration, as shown in the
block diagram, presenting this architecture as a general configuration that can deal with a broad
range of applications. A formal definition is given below.

Definition 4.8. (Linear Quadratic Gaussian) Consider a stochastic system in State-Space
representation just as in Definition 4.5, rewritten below:{

ẋ(t) = Ax(t) +Bu(t) +w(t)

y(t) = Cx(t) + v(t)
, (4.55)
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whose estimated state-vector x̂(t) is determined by a Kalman-Bucy filter and whose optimal
input signal u(t) is calculated through a finite-horizon LQR. The Linear Quadratic Gaussian
(LQG) control for the horizon t ∈ [t0, T ], with −∞ < t0 ≤ T <∞, is defined as:

˙̂x(t) = [A−Ke(t)C −BK(t)] x̂(t) +Ke(t)y(t), (4.56)

where K(t) = R−1BTP (t) and Ke(t) = Pe(t)CR
−1 are, respectively, the LQR and Kalman-

Bucy gains for matrices P (t) and Pe(t) that solve the Riccati differential equations:{
−Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q

Ṗe(t) = APe(t) + Pe(t)A
T − Pe(t)CTR−1

kfCPe(t) +Qkf

(4.57)

for boundary conditions P (T ) = Qf and Pe(t0) = E
{

[x(t0)− x̄(t0)][x(t0)− x̄(t0)]T
}

, respec-
tively.

Integral Action

Kalman-Bucy Filter

∫
Ka Open-Loop System

∫
B C

A

Ke

y

K

LQR Controller

r + xa − u

−−

+ ˙̂x x̂

−

+

+

+

Figure 4.4: Block diagram of a Linear Quadratic Gaussian control configuration.

Notice that another advantage of this controller-estimator configuration is that the solution
for both Riccati differential equations does not depends on the states at any time x(t), with the
exception of the boundary condition Pe(t0) which can in any case be obtained before the system
operation. Therefore, the values for matrices P (t) and Pe(t), and consequently K(t) and Ke(t),
for t ∈ [t0, T ], can be evaluated beforehand and then applied in the on-line operation.

The LQG controller can also be used for tracking non-constant references, given that the
system can be augmented while maintaining controllability. The augmented system is used to
calculate the controller gains K(t) using Definition 4.4, while the estimator gains Ke(t) are
optimized through the original system. Given that it can optimally solve both the regulator and
tracking problems, while still accounting for uncertainty in the system, the Linear Quadratic



4.4. LINEAR QUADRATIC GAUSSIAN (LQG) 63

Gaussian poses as a high performing multi-purpose controller. The resulting augmented system
can be represented by the closed-loop state equation:



[
˙̂x(t)
˙̂xa(t)

]
=

[
A−BK(t)−Ke(t)C −BKa(t)

−C 0

][
x̂(t)

x̂a(t)

]
+

[
Ke(t) 0

0 I

][
y(t)

r(t)

]

y(t) =
[
C 0

] [ x(t)

xa(t)

] . (4.58)

Example 4.1. For the sake of illustration, consider the same system as in Example 3.1. Consider,
now, that it is perturbed by noises wk ∼ N (0,Qkf ) and vk ∼ N (0,Rkf ), with covariances:

Qkf =

[
0.001 0.001
0.001 0.001

]
Rkf = 0.001. (4.59)

A LQG controllers for reference tracking is obtained by solving the controller Ricatti differential
equation for weightsQ = diag(10, 10, 1) andR = 0.1, considering the terminal weight P (T ) = Q.
The estimator is solved forward in time for initial condition Pe(t0) = Qkf .

The resulting simulations from Example 4.1 are shown in Fig. 4.5. Notice that, since the
integral action is now calculated over the observations, which are noisy, the controller produced
a noisy input signal. The reference tracking was still achieved, but with very oscillatory behavior.
A solution to this problem could be using the integral action as a feedback over an output signal
obtained from the estimated states, which are probably smoother. Another solution would be to
use a smoothing filter directly to the input signal to avoid this oscillatory action.
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Figure 4.5: Simulation of the LQG controllers showing the input signal (left) and correspondent
actual state responses (right). The dots denotes represents the measurements from the real
system.
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4.5 Stability and Robustness Analysis

In the last chapter, the poles of the feedback controlled system where arbitrarily assigned using
the pole-placement method. In this chapter, however, the controllers result from optimization
procedures, so it is necessary to discuss whether or not these controllers are stable and robust
given the criteria already presented.

Stability

First of all, the stability of the closed-loop system via Linear Quadratic Regulator is discussed.
One might conclude that, since this controller is obtained from an optimization process, the
resulting controller can not be unstable. Consider, however, the popular counter-intuition:
consider a scalar system ẋ(t) = x(t) + u(t), with R = 1 and Q = 0, such that its associated LQR
cost function is:

J(x, u, t0) =

∫ ∞
t0

u2(t)dt. (4.60)

In this case, the optimal control action is always u(t) = 0, for t ∈ [t0,∞]. However, this
control action results in the system ẋ(t) = x(t) which is clearly BIBO unstable. Therefore,
there are conditions under which the optimization process may result in a stable or unstable
closed-loop system, as shown by the following theorem.

Theorem 4.7. (LQR Assymptoptic Stability) Consider the infinite-horizon Linear Quadratic
Regulator as defined in Theorem 4.4. If the system is observable, then the closed-loop matrix
Acl = (A−BK) = (A−BR−1BTP ) is BIBO stable.

Proof. Consider, without loss of generality, that Q = CTC, which is still positive definite.
In this case C = Q1/2, given that Q1/2Q1/2 = C, which is a nonsingular matrix and the
observability assumption holds. Furthermore, consider the LQR cost function given an optimal
input trajectory u∗ : R→ Rr:

J(x,u∗, t0) =

∫ ∞
t0

(
xT (CTC)x+ (u∗)TRu∗

)
dt =

∫ ∞
t0

(
yTy + (u∗)TRu∗

)
dt. (4.61)

The optimal output trajectory resulting from this control action is given by y∗(t) = Cx∗(t),
where x∗(t) is the corresponding optimal state trajectory. Since u∗(t) was obtained by solving
the algebraic Riccati equation on Theorem 4.4, a well-known result is that the optimal cost
function is bounded:

V ∗(x, t0) ≤ xT (t0)Px(t0), (4.62)

and, therefore, (4.61) must also be bounded. This is only possible if y∗(t)→ 0 and u∗(t)→ 0 as
t→∞, which, since the system is observable, directly implies x∗(t)→ 0 as t→∞, concluding
that the system is BIBO stable.

Notice that, in contrast to the Pole-Placement method where the stability must be explicitly
defined through the assignment of the eigenvalues, the LQR controller guarantees a stable
closed-loop system directly, as long as the system is observable, even when the open-loop system
is unstable. Since the BIBO stability (Definition 2.7) discusses the magnitude of a system
response as t→∞, the results are derived for infinite-horizon LQR. Despite of this, it is also
possible to interpret some notion of stable response for finite-horizon LQR, since the cost function
is always bounded by the optimal cost as conditioned by the Hamilton-Jacobi equation.
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Robustness

Now, the discussion turns to the robustness properties of these optimal controllers. It can be
shown that the LQR has a gain margin GM = ∞ and a phase margin PM ≥ 60◦ [Anderson
and Moore, 1990]. This assumption can be verified from a visual inspection of the Nyquist plot,
as shown in Fig. 4.6. The reason for these values comes from the fact that the Nyquist diagram
of an optimal regulator never crosses the unit circle centered at s = −1 (implied by the Return
Difference Equality). Therefore, the diagram never crosses the point s = −1 no matter how
much the gain K is changed, which establishes the infinite gain margin. In addition, the angle
that the closest permissible point of an unit circle centered in s = 0 makes with the point s = −1
is exactly 60◦, which establishes the lower bound on the gain phase.
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Figure 4.6: Nyquist diagram of a single state system with an open-loop unstable pole but which
is closed-loop stable. The gain calculated by a LQR stabilizing controller never crosses the unit
circle centered at s = −1 + j0.

Of course, there is no physical support of saying that a controller device exhibits an infinite
gain margin, since there is always uncertainty about the model, the instrumentation and the
environment. However, the fact that the mathematical model displays infinite gain margin
allows for the assumption that the physical controller will have an extremely large margin. In
fact, the uncertainty just mentioned is the main motivation into using optimal state estimators
to reconstruct the state-vector from data, and it was shown by [Doyle, 1978] that an optimal
controller-estimator configuration, i.e., the Linear Quadratic Gaussian, has no guaranteed
margins.
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Chapter 5

Methodology

This chapter details the methodology used in order to attest the discussion presented until
now. The experiments were performed in a simulated environment, using the [MATLAB, 2018]
software as the framework to compute such simulations. The results obtained are presented and
discussed in the next chapter.

5.1 Non-Isothermal Continuous Stirred Tank

The system used for the experiments was the non-isothermal Continuous Stirred Tank Reactor
(CSTR) presented by [Klatt and Engell, 1998]. This system is a realization of a class of processes
that characterize a wide range of industrial applications, hence being considered a classical
benchmark for reactor systems. In particular, the system proposed for the experiment is a
multiple-input multiple-output (MIMO) system which is highly nonlinear, with non-minimum
phase behavior and unmeasurable states, thus makes it very challenging to control. A schematic
of this system is shown in Fig. 5.1.

Q

T

A, B, C, D

q, Tin 

A

q, T

A→ B → C
2A → D

B

Figure 5.1: The non-isothermal continuous stirred tank reactor proposed.

This system is comprised by a tank containing a dilute solution of cyclopentadiene (C5H6),
which suffers reactions together with water molecules and together with the side-products of
these reactions. The reaction scheme follows the same Van de Vusse scheme explored earlier in

67
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this report: 
A︷ ︸︸ ︷

C5H6
K1(T )−→

B︷ ︸︸ ︷
C5H7OH

K2(T )−→
C︷ ︸︸ ︷

C5H8(OH)2
2A︷ ︸︸ ︷

2C5H6
K3(T )−→

D︷ ︸︸ ︷
C10H12

. (5.1)

Since the reaction is non-isothermal, the kinetics rates K1(T ), K2(T ) and K3(T ) are function
of the temperature inside the tank, and they are assumed to follow the Arrhenius equation:

Ki(T ) = Ki0e
−Ei/R

T+273.15 (5.2)

In order to control the temperature, ensuring some safety constraints to the process, a coolant
system is coupled to the tank reactor to perform heat exchange by conduction. This scenario
also assumes that only the concentration of chemical C5H7OH and the temperature inside the
tank can be measured. Additionally, the liquid inflow into the tank carries only the chemical

C5H6 with a concentration ρ
(A)
in and temperature Tin.

A nonlinear dynamical model, which was obtained from the first principles approach, is
proposed to represent the evolution of the important states:

dρA

dt
= q(ρ

(A)
in − ρA)−

(
K1(T )ρA +K3(T )ρ2

A

)
dρB

dt
= −qρB +K1(T )ρA −K2(T )ρB

dT

dt
= q(Tin − T ) +

kWAr

%CpVr
(TC − T )

−
1

%Cp

(
K1(T )ρA∆HAB +K2(T )ρB∆HBC +K1(T )ρ2

A∆HAC

)
dTC

dt
=

1

mKCpK
Q+

kWAr

mKCpK
(T − TC)

. (5.3)

The meaning and value of each system variable is shown in Table 5.1. Additionally, the real
system has some constraints in respect to the manipulated variables, namely:

5hr−1 ≤ F ≤ 35h−1; −8500
kJ

h
≤ Q ≤ 0

kJ

h
. (5.4)

5.2 Simulation

The process and all the control structures were simulated using the MATLAB software. In
the first part of the experiments, the dynamics of the process were analyzed in respect to the
mathematical structure of the models and through the simulation results.

In respect to the control, the second part of the experiments focused on the design of
controllers using the optimal control techniques. The controllers were developed and analyzed in
the same order that they were presented in this document:

1. Linear Quadratic Regulator, assuming a nonzero initial state and perfect measurement of
the states;

2. Linear Quadratic Regulator with Integral Action, for a non-constant reference signals and
assuming perfect measurement of the states;

3. Linear Quadratic Gaussian, assuming a nonzero initial state and reconstruction of the
state-vector through observations from a stochastic linear system;



5.2. SIMULATION 69

System Variable Symbol Value Unit

Concentration A in the reactor solution ρA − mol/l
Concentration A in the reactor solution ρB − mol/l
Temperature inside the reactor T − oC
Temperature of the coolant jacket TC − oC

Inflow concentration of A ρ
(A)
in 5.1 mol/l

Inflow liquid temperature Tin 130 oC
Nominal kinetic rate for A→ B K10 (1.287)× 1012 h−1

Nominal kinetic rate for B → D K20 (1.287)× 1012 h−1

Nominal kinetic rate for 2A→ D K30 (9.043)× 109 l mol−1h
Activation energy for A→ B E1/R 9758.3 -
Activation energy for B → C E2/R 9758.3 -
Activation energy for 2A→ D E3/R 8560.0 -
Enthalpy for A→ B ∆HAB 4.2 kJ/mol
Enthalpy for B → C ∆HBC −11.0 kJ/mol
Enthalpy for 2A→ D ∆HAD −41.85 kJ/mol
Total density of the reactor solution % (0.9342)× 10−4 kg/l
Heat capacity of the solution Cp 3.01 kJ kg−1K
Heat capacity of the coolant CpK 2.0 kJ kg−1K−1

Surface area of the tank reactor AR 0.215 m2

Volume of the tank reactor VR 10.01 m3

Coolant mass mK 5.0 kg
Heat transfer coefficient kW 4032.0 kJ h−1m2K

Table 5.1: Model parameters and variables nomenclature.

4. Linear Quadratic Gaussian with Integral Action, for a non-constant reference and assuming
a reconstruction of the state-vector through observations from a stochastic linear system;

The simulation results are mainly analyzed through graphical visualizations of the data
obtained. The experiments were focused on validating the modeling and control procedures
for the system presented, instead of comparing and ranking the controllers based on the most
performing one. For the sake of completeness, however, some metrics are used to evaluate each
controller performance and relate them to the visualizations. The metrics used were the Integral
of Squared Error (ISE), Integral of Absolute Error (IAE), Integral of Time-Weighted Squared
Error (ITSE) and Integral of Time-Weighted Absolute Error (ITAE), which are given as:

IAE =

∫ T

t0

|r(τ)− y(τ)|dτ ; ITAE =

∫ T

t0

τ |r(τ)− y(τ)|dτ ;

ISE =

∫ T

t0

[r(τ)− y(τ)]2 dτ ; ITSE =

∫ T

t0

τ [r(τ)− y(τ)]2 dτ.

(5.5)



70 CHAPTER 5. METHODOLOGY



Chapter 6

Results and Discussion

This chapter presents the results of the experiments described in the last chapter. The sections
starts by presenting the simulation of the dynamical model and analyzing its properties. After
that, several optimal controllers are formulated and simulated in closed-loop conditions, both
for regulation and tracking. The control simulations are grouped accordingly to the control
objective that they impose to the system.

6.1 Dynamical Analysis

Nonlinear model simulation

The behavior of the process is accessed directly by simulating the nonlinear model presented
at (5.3). The main goal is to observe how the system responds to variations in each of its
manipulated variables. In the first simulation, shown in Fig. 6.1, the process is started at the
steady-state condition, and then a pulse is applied to the liquid inflow to the tank.
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Figure 6.1: Non-linear simulation showing the manipulated variables (left) and correspondent
response of the system variables (right) for a pulse change in the input flow-rate.

The simulation shows that both compounds A and B grows together when there is an increase
in the input flow-rate, in which case the first exhibits a greater response than the other. Of
course, this conclusion is direct from the fact that the input carries concentrations of this very
same chemical. In respect to the temperatures, notice that, since the process is non-isothermal,

71
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Figure 6.2: Non-linear simulation showing the manipulated variables (left) and correspondent
response of the system variables (right) for a pulse change in the cooling capacity.

the temperatures raised together with the increase in the reagents concentrations. Given that the
temperature of the liquid inflow is actually lower than the tank temperature at the steady-state,
it is possible to relate the increase in the temperature directly to the occurrence of the chemical
reactions. This fact characterizes the process as an exothermic process, as it can be also noted
from the first-principles model.

The second simulation was performed similarly, but applying a negative pulse to the jacket
cooling capacity. The result is shown in Fig. 6.2. As expected, the change in the cooling
capacity affects the temperatures inside the reactor tank and inside the cooling jacket. The
visualization also shows that the change in the temperature slightly changed the concentration
of the substances inside the reactor. Therefore, it is possible to consider an indirect effect of this
manipulated variable to these system variables.

Now, the goal was to visualize if it is possible to increase the concentration of the chemicals
through the reactions, while maintaining the tank temperature close to the steady-state value.
For this reason, the last simulation considers a pulse to increase the input flow-rate while another
pulse increases the magnitude of the cooling capacity. The result of this simulation is shown at
Fig. 6.3. Note that the tank temperature remained restricted to values closer to the steady-state
point, whereas the concentrations were increased by the flow-rate input. Thus, the possibility of
increasing the production of a chemical without breaking safety constraints holds.

Linearized model realization and simulation

The discussion throughout the document focused on control design methods for linear systems.
For this reason, the nonlinear model can not directly be used to develop the controllers, and a
linearization (Theorem 2.2) of this model is required. First of all, consider the following choice
for the state, input and output variables:

x(t) =


ρA(t)
ρB(t)
T (t)
Tc(t)

 ; u(t) =

[
q(t)
Q(t)

]
; y(t) =

[
ρB(t)
T (t)

]
. (6.1)

By evaluating the derivative of each differential state equation in relation to each state
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Figure 6.3: Non-linear simulation showing the manipulated variables (left) and correspondent
response of the system variables (right) for a change in the input flow-rate and cooling capacity.

variable, the obtained Jacobian is

A =



−u1o −K1(x3o)− 2K3(x3o)x1o 0
K1(x3o)

dx3o
x1e +

K3(x3o)

dx3o
x2

1o 0

K1(x3o) −u1o −K2(x3o)
K1(x3o)

dx3o
x1e

K2(x3o)

dx3o
x2e 0

∂H(x1o, x2o, x3o)

∂x1o

∂H(x1o, x2o, x3o)

∂x2o
−u1e − α+

∂H(x1o, x2o, x3o)

∂x3o
α

0 0 β −β


,

(6.2)

where the parameters α and β are given by

α =
kWAr

%CpVr
; β =

kWAr

mKCpK
, (6.3)

and the derivatives are calculated as

dKi

dx3o
=

E1/R

(x3o + 273.15)2
Ki0e

−Ei/R

x3o+273.15 ;

∂H

∂x1o
=

− 1

mKCpK
(K1(x3o)∆HAB + 2K3(x3o)x1o∆HAD) ;

∂H

∂x2o
=

− 1

mKCpK
(K2(x3o)∆HBC) ;

∂H

∂x3o
=

− 1

mKCpK

(
dK1

dx3o
x1o∆HAB +

dK2

dx3o
x2o∆HBC +

dK3

dx3o
x2

1o∆HAC

)
.

(6.4)

Similarly, the derivative of each differential equation in relation to each input variable is
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evaluated, which results in the simpler Jacobian

B =


ρ

(A)
in − x1o 0
−x2o 0

Tin − x3o 0

0
1

mKCpK

 . (6.5)

Regarding the matrices C and D, recall that only the variables ρB and T are measured in
the process. The measurement, however, is assumed to be perfect, so that these matrices can be
defined as

C =

[
0 1 0 0
0 0 1 0

]
; D = 0. (6.6)

The linear model presented in (6.2) is an approximation of the nonlinear model for any point
in the state space, given that it is a steady-state point. To obtain feasible linearization points,
the differential equation system is evaluated for all points where ρ̇A = ˙ρB = Ṫ = Ṫc = 0. To
solve this system, the input variables are selected to be the interval defined by the physical
variable restrictions. The result is shown in Fig. 6.4 for the two controlled variables, given
the manipulated variables. In this work, it is assumed the steady-state point given by xo =
[1.23, 0.90, 134.14, 128.95]T and xo = [18.83,−4495.7]T , indicated in the figure by a white cross.
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Figure 6.4: Heat-map visualization of the steady-state values for the linearized model for the
concentration of B (left) and the tank temperature (right).

Using the steady-state values just mentioned, a realization for the linearized model is obtained:

A =


−86.0962 0 −4.2010 0

50.6146 −69.4446 0.9958 0
172.2263 197.9985 −36.7597 30.7977

0 0 86.6880 −86.6880

 B =


3.865 0
−0.900 0
−4.140 0

0 0.100



C =

[
0 1 0 0
0 0 1 0

]
D =


0 0
0 0
0 0
0 0


. (6.7)

In order to demonstrate that the linear model is a valid approximation of the nonlinear
model, both systems were simulated in parallel for the same input signal. The simulation, as
shown in Fig. 6.5, starts at the steady-state values and then apply a sinusoidal change in the
input to drag the system away from this initial point. As expected, the results shows that the
linearized model is an accurate representation of the system, except when it is far from the
steady-state values.



6.1. DYNAMICAL ANALYSIS 75

10

15

20

25

30

F
lo

w
-r

at
e 

(1
/h

r)

0.8

1

1.2

1.4

1.6

C
on

ce
nt

ra
tio

n 
(m

ol
/l)

0 2 4 6 8 10
Time (hr)

-5500

-5000

-4500

-4000

-3500

C
oo

lin
g 

C
ap

ac
ity

 (
kJ

/h
r)

0 2 4 6 8 10
Time (hr)

110

120

130

140

T
em

pe
ra

tu
re

s 
(º

C
)

ρA ρB T Tc

Figure 6.5: Simulation of both the nonlinear and linearized State-Space models. The nonlinear
response is represented by the dashed lines.

Linearized model properties

Considering a State-Space realization, it is possible to access the system properties. First of all,
the BIBO stability of the system was determined through the poles location in the complex plane.
In the case of (6.7), the eigenvalues ofA were calculated as λ = [−16.79,−54.84,−86.33,−121.01],
which are all in right-hand side of the plane, i.e., Re[λi], ∀i ∈ [1, 4]. It is possible to conclude
that, in the light of this model, the system is stable.

The next property to be accessed consists in the controllability of the system. Using the
definition, the controllability matrix of this model was calculated as:

C =


3.8650 0 −315.3696 0 24465 −12.9 2271
−0.9000 0 254.0027 0 −32964 3.1 −1250
−4.1400 0 639.6409 3.0798 −38589 −380.2 43720

0 0.1000 −358.8883 −8.6688 86561 1018.5 −121250

 . (6.8)

This matrix has a row rank equal to 4, which is exactly the number of state variables. Therefore,
it is concluded that this system is indeed controllable, meaning that it is possible to drive the
system to any position in the space using a specific input signal. It is worth mentioning that
this matrix exhibits some entries with high values, which can become numerically unstable in
the case of augmenting the system.

Moreover, the last property of the system to be accessed concerns the observability of the
system. Similarly to the controllability case, the observability matrix was calculated as:

O =



0 1.0000 0 0
0 0 1.0000 0

50.6146 −69.4446 0.9958 0
172.2263 197.9985 −36.7597 30.7977
−7701.1 5019.7 −318.4 30.7
−11137 −21028 3495 −3802
862270 −411630 51710 −1246
496400 2152200 −432200 437200


. (6.9)

This matrix has a column rank equal to 4, which, again, is exactly the number of state variables.
Thus, it is possible to conclude that the system is observable, meaning that the information of
any state can be reconstructed given only the outputs.
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6.2 Optimal Control

Regulation

The results for the controllers arrangements are now presented. The first controller simulated
was the Linear Quadratic Regulator (LQR), as shown in Fig. 6.6. The simulation started with
initial condition x1(0) = x2(0) = 0 (or, equivalently, ∆x1(0) = −x1o and ∆x2(0) = −x2o) while
maintaining the states x3 and x4 at the steady-state value. The goal of this simulation was to
represent the scenario where the solution in the tank does not actually contain any concentration
of the reagents or products. This scenario, thus, requires that the controller “starts” the process
by providing the flow of reagent necessary to achieve the desirable steady-state concentration of
the controlled product. The weights used, regarding the LQR cost function, were:

Q =


0.25 0 0 0

0 0.5 0 0
0 0 1 0
0 0 0 0.01

 ; R =

[
0.25 0

0 1.1e− 5

]
. (6.10)
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Figure 6.6: Simulation of the LQR1 controller for “starting” the tank reactor to the steady-state
point. The reference is indicated by the black dashed lines, and the manipulated variables
restrictions are indicated by the red dotted lines.

Notice that the resulting reactions will change the temperature inside the tank, requiring also
that the controller manipulates the cooling capacity in order to control the reactor temperature.
As expected, the controller momentarily increases the input flow-rate in order to accelerate the
production of compound B, returning to the steady-state value to achieve the desired reference.
Notice that the input flow-rate does not grow further in the first minutes in order to avoid
overshoots, which occurs in the results presented but with small magnitude. In respect to the
reactor temperature, the controller was able to respond to the sudden change by decreasing
the absolute value of the cooling capacity, causing the coolant to increase its temperature and,
consequently, returns the reactor temperature to the reference. Therefore, the simulation shows
that the proposed optimal controller is able to drive the process to a desired constant reference
in an optimal manner, not causing overshoots and/or oscillations, in a small amount of time.
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Further testing the capabilities of this controller, the same experiment was considered, but
while subjecting the system to disturbances in some system variables. Specifically, disturbances

were applied to the inflow concentration and temperature, ρ
(A)
in and Tin, respectively, to represent

the scenario where the fluid entering the tank is perturbed by previous processes or by instru-
mentation limitations. To simulate these cases, pulse signals of values w1 = ±0.5 and w2 = ±2
were applied to the nominal value of the inflow concentration and temperature, respectively.
Each pulse starts at a time value that is an odd multiple of bT/4c and lasts for 0.02T hours,
where T is the the total size of the control horizon. The results are shown in Fig. 6.7.
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Figure 6.7: Simulation of the LQR2 controller for “starting” the tank reactor to the steady-state
point, but subjected to two disturbances pulses in the system variables.

First of all, it was observed that the control horizon had to be increased in order to allow
the feedback controller to perceive the disturbance and corrects the system response accordingly.
As a direct result of the larger horizon, the controller performed more aggressively at the first
minutes. Despite of this, the input signals did not violated the defined constraints for the
manipulated variables. It was observed that the regulator is capable of react to the disturbances
and provide a corrective action to return to the steady-state point.

Until now, the experiments were done assuming that the optimal controller had direct access
to the real system states. In a more realistic scenario, the states can only be reconstructed
through noisy measurements. A Linear Quadratic Gaussian (LQG) controller is proposed to
deal with this limitation, considering the same control objectives of the previous experiments
and using the same weighting matrices as in (6.10). In the experiments it was assumed a process
noise w : R→ R4 and measurement noise z : R→ R2 described by the Gaussian distributions:

w(t) ∼ N



x1(t)
x2(t)
x3(t)
x4(t)


∣∣∣∣∣∣∣∣


0
0
0
0

 ,


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1


 z(t) ∼ N

([
u1(t)
u2(t)

]∣∣∣∣ [00
]
,

[
0.0001 0

0 0.1

])
(6.11)

The covariance matrix of the noise w(t) tries to represent the uncertainty of the non-linear
model behavior in respect to the linearized model, while the covariance matrix of z(t) aims
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to represent realistic limitation of measurement devices in respect to these variables. It is
assumed that the Kalman-Bucy estimator can estimate these covariances fairly accurately, before
optimizing each estimator gain Ke(t). The simulation results, for the scenario of starting the
process, is shown in Fig. 6.8.
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Figure 6.8: Simulation of the LQG1 controller for “starting” the tank reactor to the steady-state
point. The dots represents the measurements of the output variables, and the colored dashed
lines represents the state estimations.

The estimation of the covariance matrices gave the estimator enough information to accurately
reconstruct the state vector from the observations. As it can be seen in the visualizations,
this control-estimation operation is very similar to the one shown in Fig. 6.6, when the states
were directly known. Thus, the LQG controller proved to be optimal for this more realistic
situation. Furthermore, the same controller was also evaluated for the case where disturbances
in the system variables are present. In this experiment, the same disturbance signal used in
the LQR simulation is provided to the system. The results are shown in Fig. 6.9. The system
responses are very similar. However, the corrective actions for the disturbances were smoother
and are barely visible in the scale of the visualization. Finally, a summary of the results in this
subsection are displayed at Table 6.1.

Controller ISE IAE ITSE ITAE

LQR1

[
7.2678
82.9199

] [
12.2719
60.6988

] [
0.0015
0.1045

] [
0.2592
2.8347

]
LQG1

[
7.2765
67.6334

] [
12.0436
48.4748

] [
0.0015
0.0596

] [
0.2299
1.7535

]
LQR2

[
7.2713

137.0858

] [
14.7600
134.5661

] [
0.0270
24.5280

] [
1.9614
51.1356

]
LQG2

[
7.3481

155.0745

] [
15.1579
160.7632

] [
0.0270
32.2785

] [
2.0193
65.5359

]
Table 6.1: Comparison between the LQR and LQG controllers obtained. The pair (LQR2, LQG2)
comprises the simulations in which the system was subjected to disturbances.
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Figure 6.9: Simulation of the LQG2 controller for “starting” the tank reactor to the steady-state
point, but subjected to two disturbances pulses in the system variables.

Tracking

Now, the experiments for controllers that track non-constant references is presented. As in the
previous subsection, the first controller simulated consists in the Linear Quadratic Regulator
with Integral Action (LQRI), also known as Linear Quadratic Servo (LQ-Servo). The simulations
starts with initial states equal to the steady-state values. The weights used were the same from
(6.10), but including the weights for the augmented states:

Q =



0.25 0 0 0 0 0
0 0.5 0 0 0 0
0 0 1 0 0 0
0 0 0 0.01 0 0
0 0 0 0 10 0
0 0 0 0 0 0.5

 ; R =

[
0.16 0

0 1e− 6

]
. (6.12)

The proposed scenario for this controller is to increase and then decrease the amount of
compound B that is produced, while maintaining the reactor temperature at a constant value.
For the concentration control, the reference signal is comprised by a sequence of step functions
which varies from approximately 12% of the operation value, which is a realistic set-point change
in such processes. The results of the simulation are shown in Fig. 6.10.

After the introduction of the integral action, two more weights were needed to be selected for
the controller optimization. The MIMO case implies a trade-off between reaching the reference
for the concentration and for the temperature, in the case that they do not represent a valid
steady-state. Therefore, the choices of weights to the integral action has to take in account the
fact that an aggressive set-point tracking may result in oscillatory, or even unstable, systems.
To avoid these situations, the weights were selected to cause a smooth tracking, and the control
horizon was expanded to allow the controller to operate for more hours.

Despite the mentioned difficulties, the controller was able to drive the system as close as
possible to the reference, while still obeying the manipulated variables constraints. Notice
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Figure 6.10: Simulation of the LQRI1 for reference tracking.

that, in the moments were the reference changes, the change in the concentration resulted in a
momentarily change in the temperature, which is promptly corrected by the feedback action of
the controller. This change, however, is very small and the temperature remained within an
interval of 0.5oC around the reference signal, which is an excellent result. Another nice response
observed in the visualization comprises in the change in the coolant temperature, which follows
closely the shape of the change in the cooling capacity. In the last simulations, this variable
evolved in a similar manner to the reactor temperature, but, in this case, the first was directly
manipulated to allow for the latter to stay at the steady-state value.

Following the same case of the previous subsection, the same controller was used to simulate
a closed-loop operation in the case when disturbances to the real system are occurring. In this
case, a pulse signal is applied to the same variables as in the last case, but for each time instant
multiple of bT/4c with a duration of 0.02T , which is a longer step in this case since T is greater.
The results are presented at Fig. 6.11. The first interesting phenomena to notice is that the
system responded more aggressively to the disturbances that occurred between the time interval
t ∈ [0.8, 4] for which r(t) = 1, when compared to the disturbances occurring in the interval
t ∈ [4, 7.2] for which r(t) = 0.8. This is expected from the fact that the system has non-linear
terms associated with the concentration ρA, which is greater at the first interval. The controller,
however, was able to correct the disturbances and drive the system back to the reference.

In the direction for a more realistic scenario, the same reference tracking just proposed was
used together with a Linear Quadratic Gaussian, augmented with integral action, to perform
the feedback over the estimated states. In this case, a different weighting for the augmented
states were modified to still result in a similar operation to the one in Fig. 6.6 and 6.7.

Q =



0.25 0 0 0 0 0
0 0.5 0 0 0 0
0 0 1 0 0 0
0 0 0 0.01 0 0
0 0 0 0 100 0
0 0 0 0 0 0.1

 ; R =

[
1 0
0 1.1e− 5

]
. (6.13)
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Figure 6.11: Simulation of the LQRI2 controller for reference tracking, but subjected to three
pulse of disturbances in the system variables.

In this case, the process and measurement noises used, w : R → R4 and z : R → R2,
respectively, are described by the Gaussian distributions:

w(t) ∼ N



x1(t)
x2(t)
x3(t)
x4(t)


∣∣∣∣∣∣∣∣


0
0
0
0

 ,


0.4 0 0 0
0 0.4 0 0
0 0 0.5 0
0 0 0 0.5


 z(t) ∼ N

([
u1(t)
u2(t)

]∣∣∣∣ [00
]
,

[
0.0001 0

0 0.01

])
.

(6.14)

The greater values for the covariance Qk of the covariance noise reflects the fact that the
estimator becomes more uncertain about the system when it follows a reference signal far from
the steady-state value. The resulting operation is displayed at Fig. 6.12.

The first difference noted was the fact that the weights for the augmented states for the
LQG controller actually needed a value of greater magnitude than those used for the LQR case
to be able to yield the same results. There are two important phenomena to emphasize in this
result. First of all, the input signals requested from the controller are not smooth, resulting in a
oscillatory behavior in the actual response of the system (and in the Kalman-Bucy filter state
estimations). This is resulting for the fact, as noted in Example 4.1, that the integral action
is calculated using the measurements of the system output, which are noisy. In addition to
this, the Kalman-Bucy filter was not able to effectively reconstruct the real states in the cases
for the references that are far from the linearization steady-state point. It is visible that the
estimates have an offset when the system reaches the steady-state after tracking those references.
In contrast, the estimate is far accurate when the real response is close to the linearization
steady-state point, as evidenced in the temperature responses. This phenomena is resulting from
the fact that the Kalman-Bucy filter is modeled from a linearized realization of the non-linear
system, exhibiting the same limitations as were observed in Fig. 2.3.

The two problems just mentioned are somehow connected. A possible solution for the
oscillatory input could be to use the state estimates and the linearized State-Space model to
produce an output estimate; and then use it to calculate the integral action. Since the matrix Qk,
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Figure 6.12: Simulation of the LQGI1 controller for reference tracking.

estimated from the noise covariances, can be underestimated so that the Kalman-Bucy model is
considered less uncertain and the estimations are less oscillatory. However, the limitation of the
linear Kalman-Bucy filter will result in a poor reference tracking, in respect to the non-linear
system response, if the estimated states are used in the integral action. A feasible solution, in
this case, would be to explore more performing state estimators for non-linear systems.

For the sake of completeness, the same tracking objective was simulated for the case of
disturbances actuating on the real system, just as in the previous cases, as shown in Fig. 6.13.
The resulting control shows a more aggressive response in respect to the previous case, but it
was still able to correct the disturbance and track the system to the reference. This fact proves
the feasibility of using controller-estimator configurations for reference tracking control. Finally,
a summary of the results in this subsection are displayed at Table 6.2.

Controller ISE IAE ITSE ITAE

LQRI1

[
0.5929
2.0197

] [
7.4300
15.1220

] [
9.0789
33.7962

] [
23.1565
49.4736

]
LQGI1

[
0.5060
11.5765

] [
7.0710
47.5308

] [
8.1233

214.0017

] [
25.0444
189.6191

]
LQRI2

[
0.7860

167.4390

] [
10.1643
128.4992

] [
11.6943

2059.6345

] [
32.7671
450.4048

]
LQGI2

[
0.8902

687.4735

] [
12.6788
322.6335

] [
17.1311

11317.1011

] [
50.5231

1274.8359

]
Table 6.2: Comparison between the LQRI and LQGI controllers. The pair (LQRI2, LQGI2)
comprises the simulations in which the system was subjected to disturbances.
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Figure 6.13: Simulation of the LQGI2 controller for reference tracking, but subjected to three
pulse of disturbances in the system variables.
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Chapter 7

Conclusion

This work has presented a self-contained mathematical framework to model and control chemical
reactor systems, focusing on optimal control techniques. In this document, several results
were presented and discussed in order to provide a complete understanding of the concepts
and methods explored. The discussed methods were applied to a given model of a challenging
real-world chemical reactor, which consists of a non-isothermal process following the Van de
Vusse reaction scheme. The experiments have shown that optimal control is a feasible solution
when the controller has direct access to the internal states of the system, but performed worse
when the states are not accessible but estimated. The control simulations, however, still produced
practical results that are realistic in respect to real plant of such processes.

The use of optimal controllers greatly reduces the complexity of the controller synthesis
procedure, while ensuring an optimal operation. The methods presented can still be expanded
to more complex formulations, which would allow for better performance in more adverse cases.
Specifically, more advanced state estimation techniques can be considered to mitigate the problem
of reference tracking, determining the integral action through an estimate of the controlled
variables rather than using the observations themselves.

This work also emphasizes the possibility of formulating more advances techniques, within
the scope of optimal control, to achieve better results. As future work, there is the necessity
to decouple the control and estimator sample time from the continuous-time in which the real
system operates, providing a more realistic configuration of feedback control loops. Additionally,
non-linear state estimation techniques should be explored to solve the linearized Kalman filter
limitation, and constrained optimal controllers should be explored to mathematically ensure
that the hard constraints of the system are being respected.
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Appendix A

Properties of Gaussian Distributions

Definition A.1. (Gaussian Distribution) A random variable x ∈ Rn has a Gaussian distribution
with mean µ ∈ Rn and covariance Σ ∈ Rn×n, denoted as x ∼ N (x|µ,Σ), if its probability
density is described as:

N (x|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}
. (A.1)

Lemma A.1. (Joint distribution of Gaussians) Consider the random variables x ∈ Rn and
y ∈ Rm, which have the Gaussian distributions

p(x) = N (µ,Σ),
p(y|x) = N (Ax+ u,L),

(A.2)

then the distribution of (x,y) and the marginal distribution of y are given as:

p

([
x
y

])
= N

([
x
y

]∣∣∣∣ [ µ
Aµ+ u

]
,

[
Σ ΣAT

AΣ AΣAT +L

])
,

p(y) = N
(
Aµ+ u,AΣAT +L

)
.

(A.3)

Lemma A.2. (Conditional distribution of Gaussians) Consider the random variables x ∈ Rn
and y ∈ Rm, which have the joint Gaussian distribution

p

([
x
y

])
= N

([
x
y

]∣∣∣∣ [µxµy
]
,

[
Σxx Σxy

ΣT
xy Σyy

])
, (A.4)

then the marginal and conditional distributions of x and y are given as:

p(x) = N (x|µx,Σxx),

p(y) = N (y|µy,Σyy),

p(x|y) = N (x|µx + ΣxyΣ
−1
yy (y − µy),Σxx −ΣxyΣ

−1
yy ΣT

xy),

p(y|x) = N (y|µy + ΣT
xyΣ

−1
xx (x− µx),Σyy −ΣT

xyΣ
−1
xxΣxy).

(A.5)
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