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SLS-BRD: A system-level approach to seeking
generalised feedback Nash equilibria

Otacilio B. L. Neto, Michela Mulas, and Francesco Corona

Abstract—This work proposes a policy learning algorithm for
seeking generalised feedback Nash equilibria in NP -players non-
cooperative dynamic games. We consider linear-quadratic games
with stochastic dynamics and design a best-response dynamics
in which players update and communicate a parametrisation of
their state-feedback policies. Our approach leverages the System
Level Synthesis framework to formulate each player’s update
rule as the solution to a tractable robust optimisation problem.
Under certain conditions, rates of convergence to a feedback Nash
equilibrium can be established. The algorithm is showcased in
exemplary problems ranging from the decentralised control of
unstable systems to competition in oligopolistic markets.

Index Terms—Non-cooperative games, Feedback Nash equilib-
rium, Best-response dynamics, System level synthesis

I. INTRODUCTION

MODERN cyber-physical systems are often comprised
of interacting subsystems operated locally by selfish

decision-making agents. Ideally, agents operate these systems
according to feedback policies that optimise local objectives,
while satisfying global requirements and being robust to their
rivals’ interference. However, the large-scale and decentralised
nature of most applications, alongside the usual lack of coordi-
nation between agents, hinders most traditional approaches to
policy design. Dynamic game theory provides an alternative
framework based on the concept of competitive equilibria
(e.g., the Nash equilibrium [1, 2]), which describe locally
optimal, yet strategically stable, operating conditions for each
non-cooperative agent. A methodology for policy design based
on Nash equilibrium seeking thus presents a promising venue
for enabling a decentralised control of cyber-physical systems.

In general, solving a non-cooperative game can concern
distinct goals: i) For the unbiased observer, to examine the
behaviour of rational agents from a local to a global scale; ii)
for the game designer, to actuate the self-interested players
towards system-wide objectives; and iii) for the player, to
determine locally optimal and robust policies in competitive
environments. Regardless, computing a Nash equilibrium (NE)
solution is a notoriously difficult task [3]. Algorithmic game
theory thus emerges as the field concerned with designing
procedures to bridge this computational gap [4]. An important
class of algorithms are those which place to the players the
task of converging towards a non-cooperative equilibrium:
These include best-response dynamics (BRD, [5]–[10]) and
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no-regret learning (NRL, [11]–[15]). Recently, online feedback
optimisation has also been employed for equilibrium seeking
problems [16]. In general, these are fixed-point iteration meth-
ods centred on players updating their strategies, simultaneously
and independently, using only the information available to them.
In particular, best-response dynamics stands out as a simple,
yet fundamental, model of policy learning for uncoordinated
but communicating players. These algorithms have become
important tools in economics and engineering, with applications
including the design and control of networked systems [17]–
[19], robotics [20, 21], and resource management [22]–[24].

For dynamic games, any solution concept depends qualitatively
on a description of the data available to each player; a notion
termed information pattern [1]. Under open-loop information
patterns, when players only access the initial state of the game,
the analysis and solution of NE problems are well-understood.
Conversely, games under closed-loop (or feedback) information
patterns, when players monitor the state of the game, are still
under active research. A feedback Nash equilibrium (FNE)
solution is often more attractive than its open-loop counterpart:
It renders the players robust to disturbances and decision errors.
However, designing routines for computing FNE is demanding
for all but simple cases. A notably challenging class of games
consists of generalised feedback Nash equilibrium (GFNE, [2])
problems: When players’ policies are required to satisfy coupled
constraints (e.g., restrictions on the state of the game). To the
best of our knowledge, methods for FNE seeking exist only
for linear-quadratic games under restrictive assumptions [25]–
[28], unconstrained nonlinear and control-affine games [29]–
[32], and application-specific problems [33, 34]. Recently, [35]
expanded these results and presented a systematic (approximate)
solution for GFNE problems. Despite remarkable, these efforts
are restricted to finite-duration games and thus exclude decision-
making processes in which agents are continuously operating
the underlying system. Finally, a systematic solution is also
lacking for GFNE games described by stochastic dynamics.

In this work, we investigate algorithms for GFNE seeking in
(stationary) difference games with linear-stochastic dynamics.
Leveraging the System Level Synthesis (SLS, [36]) framework,
we propose a best-response approach based on a parametrisation
of all stabilising policies for the game. The algorithm consists of
players iteratively, and simultaneously, updating the parameters
of their individual policies, then announcing these changes
through some communication network (Figure 1). Under our
approach, each player’s update rule is formulated as the solution
to a tractable robust optimisation problem. Moreover, these
problems allow for constraints to be imposed directly on the
policies’ structure, thus having the ability to encode information
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Figure 1. SLS-BRD: Control architecture and the learning dynamics.

patterns at the synthesis level. Finally, this proposed learning
dynamics do not depend on the state and actions applied to
the system, and thus can be performed simultaneously with
the game’s execution. In summary, our contributions are:

(i) A system-level best-response dynamics (SLS-BRD) al-
gorithm for GFNE seeking in linear-stochastic dynamic
games. Specifically, we design a class of best-response
maps which compute an optimal system level parametrisa-
tion of a player’s policy in response to its rivals’ choices.

(ii) A realisation of the best-response mappings as robust
finite-dimensional programs amenable to numerical so-
lutions. Considering these best-responses, the SLS-BRD
algorithm is formally an ε-GFNE seeking algorithm for an
equilibrium gap ε > 0 which can be explicitly established.

(iii) For a specific but important class of dynamic games, an
analysis of the conditions and rates of convergence of
the SLS-BRD to feedback Nash equilibria.

This policy learning algorithm is showcased in simulated
experiments on the decentralised control of an unstable network
and price management in a competitive oligopolistic market.

The paper is organised as follows: Section II overviews the
classes of (generalised) static and dynamic games, and the
best-response dynamics algorithm. In Section III, we provide a
system level parametrisation for linear-stochastic games, then
design a best-response dynamics for GFNE seeking. Finally,
Section IV illustrates this learning dynamics in simulated
examples, and Section V provides some concluding remarks.
Towards a concise presentation, only some essential theorems
are proved in the main text: The remaining are in the Appendix.

A. Notation

We use Latin letters to denote vectors (lowercase) and mappings
(uppercase), and use boldface to distinguish signals, operators,
and their respective spaces. Sets are in calligraphic font; excep-
tions are the usual R and N, and the sets of N ×N symmetric
(SN ), positive semidefinite (SN+ ), and positive definite matrices
(SN++). In particular, sequences are denoted x = (xt)t∈I for
a countable set I ⊆ N, or x = (xt)

T
t=0 if I = {0, . . . , T}.

For p ∈ (0,∞), we use the space of Nx-dimensional vector-
sequences `Nxp (I) = {x : ‖x‖`p = (

∑
t∈I ‖xt‖p)1/p < ∞},

with `Nx∞ and `Nx∞,e the space of all bounded sequences and all
sequences, respectively. L(X ,Y) is the set of all bounded
linear operators A : X → Y and we sometimes denote
transformed signals by Ax = (Axt)t∈I . Whenever (X ,Y) are
finite-dimensional, we let MA refer to a matrix representation
of A. We use the standard definition of Hardy spaces H∞ and
RH∞, and write 1

zRH∞ to refer to the set of real-rational
strictly proper transfer functions. Finally, some standard signals
and operators used in this paper are: The impulse signal
δ = (δt)t∈I , the identity operator I and the identity matrix
INx , and the shift operator S+ : (x0, x1, . . .) 7→ (0, x0, . . .).

We distinguish set-valued mappings from ordinary functions
using the notation F : X ⇒ Y . For any tuple s = (sp)p∈P ∈ S
we frequently write s = (sp, s−p) to highlight the element sp;
this should not be interpreted as a re-ordering. Similarly, if
S =

∏
p∈P Sp, we define the product S−p =

∏
p̃∈P\{p} S p̃.

II. NON-COOPERATIVE GAMES AND BEST-RESPONSE
DYNAMICS

A (static) NP -player game, denoted by a tuple

G := (P, {Sp}p∈P , {Lp}p∈P), (1)

defines the problem in which players p ∈ P = {1, . . . , NP }
each decides on a strategy sp ∈ Sp(s−p) ⊆ Sp to minimise
an objective function Lp : S1 × · · · × SNP → R. The strategy
spaces Sp (∀p ∈ P) determine the actions available to the
players, with the mappings Sp : S−p ⇒ Sp restricting this
choice based on the actions from their opponents. As such, both
the players’ objectives and feasible strategies depend explicitly
on their rivals’ strategies. Finally, the players are assumed to
be rational, non-cooperative, and acting simultaneously.

A solution to the game G is understood as a strategy profile
s = (s1, . . . , sNP ) ∈ S, S = S1 × · · · × SNP , having some
specified property that makes it agreeable to all players if they
act rationally. In non-cooperative settings, a widely accepted
solution concept is that of a generalized Nash equilibrium: The
game is solved when no player can improve its objective by
unilaterally deviating from the agreed strategy profile. Formally,

Definition 1. A strategy profile s∗ = (s1∗ , . . . , sN
∗
P ) ∈ S is a

generalized Nash equilibrium (GNE) for the game G if

Lp(sp
∗
, s−p

∗
) ≤ min

sp∈Sp(s−p∗ )
Lp(sp, s−p

∗
). (2)

holds for every player p ∈ P .

In general, the set of GNEs that solve a game G,

ΩG := {s∗ ∈ S : s∗ satisfies Eq. (2)},

is not a singleton. As such, players might favour different
solutions based on their individual objectives. We thus seek to
characterise which solutions are “acceptable”, in the sense that
no other equilibrium can improve the objective of all players
simultaneously. Consider the partial ordering of ΩG defined by

s∗ ≺ s̃∗ ⇐⇒ Lp(sp
∗
) ≤ Lp(s̃p

∗
), ∀p ∈ P, (3)

with at least one inequality being strict, for any pair s∗, s̃∗ ∈ ΩG .
A solution s∗ ∈ ΩG is then characterised as an admissible GNE
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if there are no other equilibrium s̃∗ ∈ ΩG such that s̃∗ ≺ s∗.
Note that an admissible GNE can still be favourable to only
a subset of players (that is, s̃∗ ⊀ s∗ ⊀ s̃∗), and thus it is
possible that G has no solution that is “fair” to all players.
The game might also not admit any GNE (i.e., ΩG = ∅), then
being characterised as unsolvable. Hereafter, we ensure that
the problems being discussed are well-posed by considering
the following conditions on their primitives:

Assumption 1. For each player p ∈ P ,

a) the objective Lp : S1 × · · · SNP → R is jointly continuous
in all of its arguments and convex in the p-th argument,
sp ∈ Sp(s−p), for every s−p ∈ S−p.

b) the mapping Sp : Sp ⇒ S−p takes the form

Sp(s−p) := {sp ∈ Sp : (sp, s−p) ∈ SG},

where SG is some global constraint set shared by all players.
Moreover, Sp and SG are both compact convex sets and
they satisfy SG ∩ (S1 × · · · × SNP ) 6= ∅.

Under Assumption 1, a generalisation of the Kakutani fixed-
point theorem ensures that G has a GNE, that is, ΩG 6= ∅ [37].
In practice, these conditions consider each objective to have
a unique optimal value, while imposing the feasible set of
strategies to be nonempty and coupled only through a common
constraint. Although restrictive, these assumptions still cover a
broad class of problems of practical relevance.

We investigate algorithms for solving G. A direct computation
of a GNE is equivalent to solving NP optimisation problems
simultaneously, as implied by Definition 1. Such an approach
would require players to be coordinated and their objectives
to be public. Conversely, we consider adaptive procedures in
which the players learn their GNE strategies independently. In
this direction, consider that G admits episodic repetitions, and
let sk := (s1

k, . . . , s
NP
k ) be the strategy profile taken by players

P at the k-th episode. A prototypical learning procedure for
equilibrium seeking is outlined in Algorithm 1, where

• T p : Sp × S−p ⇒ Sp describes how the p-th player
updates its strategy, based on its opponents’ predicted
next actions and given its individual objective;

• Rp : S ⇒ S−p describes how the p-th player’s predicts
its opponents’ strategies for the next episode, based on
the strategy profile currently being played.

Algorithm 1: Prototypical learning dynamics
Input: Game G := (P, {Sp}p∈P , {Lp}p∈P)
Output: GNE s∗ = (s1∗ , . . . , sN

∗
P )

1 Initialize s0 = (s1
0, . . . , s

NP
0 ) and k = 0;

2 for k = 1, 2, . . . do
3 if sk ∈ T (sk) then return sk;
4 for p ∈ P do
5 Update spk+1 ∈ T p(s

p
k, R

p(sk) | Lp);

The procedure in Algorithm 1 belongs to the class of fixed-point
methods: Its termination implies that s∗ is a fixed-point of both

T p and Rp, that is, s∗ ∈ T p(sp∗ , Rp(s∗)) ⊆ T p(sp∗ , s−p∗). In
its general form, the conditions (and convergence rates) for
these learning dynamics to approach an equilibrium are difficult
to establish. In this work, we build upon a fundamental instance
from this class of algorithms: The best-response dynamics
(BRD). This routine is overviewed in the following.

Best-response dynamics: Let the mapping BRp : S−p ⇒ Sp,

BRp(s−p) := arg min
sp∈Sp(s−p)

Lp(sp, s−p) (4)

denote the best-response of p ∈ P to other players’ strategies.
Collectively, BR(s) := BR1(s−1)×· · ·×BRNP (s−NP ) ⊆ S
is the joint best-response to any given profile s ∈ S. Then,

Theorem 1. A strategy profile s∗ = (s1∗ , . . . , sN
∗
P ) ∈ S is a

GNE for G if and only if s∗ ∈ BR(s∗) or, equivalently,

sp
∗
∈ BRp(s−p

∗
), ∀p ∈ P. (5)

The task of computing a Nash equilibrium can thus be translated
into searching for a fixed-point of the set-valued mapping
BR : S ⇒ S . The set of GNE solutions for G is the set of all
such fixed-points, ΩG := {s∗ ∈ S : s∗ ∈ BR(s∗)}. A natural
procedure for GNE seeking thus consists of players adapting
their strategies towards best-responses to their rivals’ strategies,
which they assume will remain constant. Formally,

T p(spk, R
p(sk)) := (1−η)spk + ηBRp(Rp(sk)), (6)

given Rp(sk) = s−pk and a learning rate factor of η ∈ (0, 1).
This learning dynamics, summarised in Algorithm 2, is known
as best-response dynamics or fictitious play.

Algorithm 2: Best-Response Dynamics (BRD)
Input: Game G := (P, {Sp}p∈P , {Lp}p∈P)
Output: GNE s∗ = (s1∗ , . . . , sN

∗
P )

1 Initialize s0 = (s1
0, . . . , s

NP
0 ) and k = 0;

2 for k = 0, 1, 2, . . . do
3 if sk ∈ BR(sk) then return sk;
4 for p ∈ P do
5 Update spk+1 ∈ (1−η)spk + ηBRp(s−pk ) ;

After each episode, the strategy profile gets updated as

sk+1 = T (sk) = (1− η)sk + ηBR(sk), (7)

given the global update rule T = (1 − η)I + ηBR. Notably,
the mappings T and BR share the same set of fixed-points:
The GNEs ΩG . We can then establish the following result.

Theorem 2. Let BR : S ⇒ S be a non-expansive mapping.
Then, the best-response dynamics sk+1 = T (sk) converge
monotonically to a GNE solution s∗ ∈ ΩG , that is,

lim
k→∞

inf
s∗∈ΩG

‖T (sk)− s∗‖ = 0 (8)

given any appropriate norm ‖ · ‖ for S.

This convergence result stems from fixed-point theory, where
the BRD algorithm is interpreted as belonging to the class of
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averaged (or Mann-Krasnosel‘skii) iteration methods [38, 39].
For non-generalised quadratic problems, we show in Section
III-B that the best-response mapping BR is non-expansive
under specific conditions on L1, . . . , LNP . Importantly, if the
best-response mapping is a contraction, then the BRD converge
geometrically to a GNE solution s∗ ∈ ΩG , which is unique.

Theorem 3. Let BR : S ⇒ S be LBR-Lipschitz, LBR < 1.
Then, from any feasible s0 ∈ S, the best-response dynamics
sk+1 = T (sk) converge to the unique GNE s∗ ∈ ΩG with rate

‖sk − s∗‖
‖s0 − s∗‖

≤
(
(1−η) + ηLBR

)k
(9)

given any appropriate norm ‖ · ‖ for S .

Importantly, these results might not hold in practice whenever
the best-response maps, {BRp}p∈P , are only approximated
(e.g., by solving Eq. (4) numerically). However, such inexact
averaged operators are still known to converge under specific
assumptions on the accuracy of this approximation [40]. The
learning rate η also plays a central role in the numerical stability
of the BRD algorithm: A careful choice is required to ensure
that strategy updates do not escape the feasible set, that is, to
ensure that T (sk) ∈ SG∩S for all sk ∈ SG∩S . Otherwise, the
learning dynamics become undefined and the aforementioned
convergence results do not apply. For non-generalised games,
T trivially satisfy the constraints for any η ∈ (0, 1) and thus a
careful design of the learning rate might not be necessary. In
such cases, η → 1 is the optimal choice if BR is a contraction
and the convergence rate in Eq. (9) simplifies to LkBR.

Finally, we note that the stopping criteria in Algorithm 2
can be modified to allow for earlier termination. In this case,
interrupting the best-response dynamics at some episode kf > 0
will produce a strategy profile skf ∈ S for which

Lp(spkf , s
−p
kf

) ≤ min
sp∈Sp(s−pkf

)
Lp(sp, s−pkf ) + ε (10)

holds for every player p ∈ P with an “equilibrium gap” ε > 0.
This profile characterises an ε-GNE: No player can improve its
cost more than ε by unilaterally changing his strategy. The set of
all ε-GNEs is denoted ΩεG = {sε ∈ S : sε satisfies Eq. (10)}.

A. Infinite-horizon dynamic games

An infinite-horizon dynamic NP -player game, denoted by tuple

G∞ := (P,X , {Up}p∈P ,W , {Jp}p∈P), (11)

is defined by the stochastic linear dynamics

xt+1 = Axt +
∑
p∈P

Bpupt + wt, x0 given, (12)

describing how the state of the game, x = (xt)t∈N ∈ X ,
evolves in response to the players’ actions up = (upt )t∈N ∈ Up

(∀p ∈ P) and the additive random noise w = (wt)t∈N ∈W .
For each realisationw ∈W and initial x0, the state is explicitly
expressed as x = Fwu via the causal affine operator

Fw : u 7→ (I − S+A)−1
(∑
p∈P

S+B
pup + S+w + δx0

)
,

(13)

with A : x 7→ (Axt)t∈N and Bp : up 7→ (Bpupt )t∈N. Because
known, the dependency on x0 is omitted to simplify notation.
Moreover, we assume Ewt = 0 and E(wtw

T
t′) = δt−t′Σw,

given a covariance matrix Σw ∈ SNx++, for every t, t′ ∈ N.
Finally, the sets X , Up (∀p ∈ P), and W define all permissible
state, action, and noise sequences; they take the form

X := {x ∈ `Nx∞ (N) : xt ∈ X , t ∈ N};

Up := {up ∈ `N
p
u∞ (N) : upt ∈ Up, t ∈ N};

W := {w ∈ `Nx∞ (N) : wt ∈ W, t ∈ N},

given sets X ⊆ RNx , Up ⊆ RNpu (∀p ∈ P), and W ⊆ RNx .

In dynamic stochastic games, each player decides on a plan of
action up ∈ Up(u−p) to minimize its objective functional

Jp(up,u−p) := E

[ ∞∑
t=0

Lp(xt, u
p
t , u
−p
t )

]
, (14)

defined by cost function Lp : X × U1 × · · · × UNP → R. The
mappings Up : U−p ⇒ Up restrict the permissible strategies
for each player based on their rivals’ strategies. Under this
formulation, the dynamic game G∞ is stationary and can
be interpreted as a static game defined on the appropriate
functional spaces. A plan of action u = (u1, . . . ,uNP ) ∈ U
can then be characterised as a generalised Nash Equilibrium
solution to G∞ when no player can improve its objective by
unilaterally deviating from this agreed profile. Formally,

Definition 2. A strategy profile u∗ = (u1∗ , . . . ,uN
∗
P ) ∈ U is

a generalized Nash equilibrium (GNE) for the game G∞ if

Jp(up
∗
,u−p

∗
) ≤ min

up∈Up(u−p∗ )
Jp(up,u−p

∗
) (15)

holds for every player p ∈ P .

As before, the set of GNEs that solve G∞,

ΩG∞ := {u∗ ∈ U : u∗ satisfies Eq. (15)},

is not necessarily a singleton and can include non-admissible
equilibria. The game is considered unsolvable if ΩG∞ = ∅.
The following assumptions are taken for this class of games:

Assumption 2. For each player p ∈ P and noise w ∈W ,

a) the cost functional Jp : U1 × · · ·UNP → R is jointly
continuous in all of its arguments and convex in the p-th
argument, up ∈ Up(u−p), for every sequence u−p ∈ U−p.

b) the mapping Up : U−p ⇒ Up takes the form

Up(u−p) := {up ∈ Up : (up,u−p) ∈ F †w(X ) ∩ UG},

where F †w is a left-inverse of the operator in Eq. (13) and

UG = {u ∈
∏
p∈P `

Npu∞ (N) : (upt , u
−p
t ) ∈ UG , t ∈ N}

is a global constraint set shared by all players. The sets Up,
UG , and X are all non-empty, compact, and convex. Finally,
we have that F †w(X ) ∩ UG ∩ (U1 × · · · × UNP ) 6= ∅.

These conditions are analogous to those of Assumption 1: They
ensure the existence of GNE solutions to G∞, that is, ΩG∞ 6= ∅.
In this case, the players not only share a global constraint UG ,
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but are also required to ensure that state trajectories lie in
a feasible set, x ∈ X , against all possible noise realisations.
These constraints often describe operational desiderata and/or
limitations concerning the game G∞. Moreover, note that
Assumption 2 implies that the operator Fw is injective, that
is, that distinct control signals cannot produce the same state
trajectory. A sufficient condition for this property consists on
the matrix B = [B1 B2 · · · BNP ] being full-rank.

Any equilibrium u∗ ∈ ΩG∞ incorporates an open-loop informa-
tion pattern: Actions u∗t = (u1∗

t , . . . , u
N∗P
t ) depend explicitly

only on initial x0 ∈ X and stage t ∈ N. A plan of action with
such representation is undesirable, as players become sensible
to noise disturbances and decision errors. Conversely, a state-
feedback decision policy, u∗ = K(x) for some K : X → U ,
often carry desirable robustness properties. In this sense, a
feedback (respectively, open-loop) representation of u∗ ∈ ΩG∞
is said to be strongly (weakly) time consistent [1]. In this work,
we investigate state-feedback solutions to the game G∞.

We consider a closed-loop information pattern and assume that
each p-th player’s actions are represented as

up := Kpx, Kp : x 7→ Φp ∗ x, (16)

given a causal operator Kp ∈ Cp ⊆ L(X ,Up) defined by its
convolution kernel Φp = (Φpn)n∈N ∈ `1(N). The sets {Cp}p∈P
describe the operators that satisfy some G∞-related restric-
tions (e.g., information patterns incurred by communication,
actuation, and sensing delays). In this setting, players do not
devise their actions explicitly but rather by designing a state-
feedback policy profile K := (K1, . . . ,KNP ) ∈ C, with
C = C1×· · ·×CNP . The solution concept that naturally arises
is that of a generalized feedback Nash equilibrium.

Definition 3. A policy profile K∗ = (K1∗ , . . . ,KN∗P ) is a
generalized feedback Nash equilibrium (GFNE) for G∞ if

Jp(up
∗
,u−p

∗
) ≤ min

up∈Up(u−p∗ )
Jp(up,u−p

∗
), (17)

where u∗ ∈ Ker(I −K∗Fw), holds for every p ∈ P .

The set of GFNE that solve G∞ is defined as

ΩKG∞ := {K∗ ∈ C : u∗ = K∗x∗ satisfies Eq. (17)}.

We consider K∗ ∈ ΩKG∞ to be admissible only if it renders
the game stable, that is, if the closed-loop evolution

x∗ =
(
I − S+(A−

∑
p∈P B

pKp∗)
)−1(

S+w + δx0

)
is bounded (x∗ ∈ `Nx∞ ) for all bounded noise (w ∈ `Nx∞ ).
A policy satisfying this requirement is said to be stabilising.
From Assumption 2, we have ΩKG∞ 6= ∅ when C = L(X ,U).
For a more specific C ⊂ L(X ,U), establishing the existence
(and, especially, uniqueness) of a solution is demanding [41].
In practice, the set ΩKG∞ can be constructed from open-loop
equilibria u∗ ∈ ΩG∞ by i) parametrising the set of all possible
trajectories {x∗w = Fwu

∗}w∈W , then ii) identifying policies
(K1∗ , . . . ,KN∗P ) that satisfy {up∗ = Kp∗x∗w}w∈W , p ∈ P .
Highlighting this equivalence, we refer to such u∗ as the open-
loop realisation of the closed-loop policy K∗, and vice-versa.

Best-response dynamics for GFNE seeking: The mapping

BRp(u−p) := arg min
up∈Up(u−p)

Jp(up,u−p) (18)

is the best-response of p ∈ P to other players’ plan of action.
Under its feedback representation, up = Kpx ∈ BRp(u−p)
is a solution to the infinite-horizon control problem

minimize
up:=Kpx

E

[ ∞∑
t=0

Lp(xt, u
p
t , u
−p
t )

]
(19a)

subject to
∀t∈N

xt+1 = Axt +
∑
p̃∈P B

p̃up̃t + wt, (19b)

xt ∈ X , upt ∈ Up, (upt , u
−p
t ) ∈ UG , (19c)

Kp ∈ Cp, (19d)
(x0 given). (19e)

While posed in terms of action signals (up, p ∈ P), Problem
(19) should be interpreted as the direct search for a best-
response policy Kp against the (fixed) plan of action from
other players, u−p := (up̃)p̃∈P\{p}. We slightly abuse notation
and let BRp(K−p) be its solutions, when the problem is
parametrised by u−p := K−px = (K p̃x)p̃∈P\{p}. The
mapping BR : C ⇒ C, defined by BR(K) = BR1(K−1)×
· · · ×BRNP (K−NP ), is the joint best-response to a strategy
profile K. The GFNEs of G∞ are thus the fixed-points of
this mapping: That is, ΩKG∞ = {K∗ ∈ C : K∗ ∈ BR(K∗)}.
Due to constraints (X ,Up,UG) and Cp, an analytical solution
to Problem (19) does not exist. Moreover, because infinite-
dimensional, its numerical approximation cannot be obtained.

The BRD method for GFNE seeking is given in Algorithm
3. As G∞ is dynamic and stationary, the procedure needs not
episodic repetitions of the game. Instead, the learning dynamics
occurs simultaneously with the game’s execution: Players learn
and announce their new policies at stages t ∈ {(k+1)∆T}k∈N.
Kk := (K1

k , . . . ,K
NP
k ) denotes the strategy profile after k ∈

N updates. The period ∆T ≥ 1 defines the rate at which
policies are updated, reflecting some communication structure
(e.g., the time needed for each p ∈ P to collect {K p̃

k}p̃∈P\{p}).

Algorithm 3: BRD for GFNE seeking (BRD-GFNE)
Input: Game G∞ := (P,X , {Up}p∈P ,W , {Jp}p∈P)
Output: GFNE K∗ = (K1∗ , . . . ,KN∗P )

1 Initialize K0 = (K1
0 , . . . ,K

NP
0 ) and k = 0;

2 for t = 0, 1, 2, . . . do
/* Players apply actions {upk,t = Kp

kxk,t}p∈P */

3 if Kk ∈ BR(Kk) then return Kk;
4 if t = (k+1)∆T then
5 for p ∈ P do
6 Update Kp

k+1 ∈ (1−η)Kp
k + ηBRp(K−pk ) ;

7 k := k + 1;

If we verbally execute Algorithm 3, we have the following:

• The players p ∈ P act on G∞ according to the policies

upk = Kp
kxk, k ∈ N,
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where upk = (upt )t∈Tk and xk = (xt)t∈Tk are the signals
restricted to the interval Tk = [k∆T, (k+1)∆T ).

• At t = (k+1)∆T , every p-th player updates its policy,

Kp
k+1 ∈ (1−η)Kp

k + ηBRp(K−pk ),

which is then announced to the other players.

The BRD-GFNE induces an operator T = (1 − η)I + ηBR
which is equivalent to the update rule of its static counterpart.
Thus, it possesses the same properties: The learning dynamics
converge if BR is non-expansive and the convergence rate is
geometric if BR is also a contraction (Theorems 2–3). These
properties can also be stated in terms of stage indices t ∈ N
by substituting k = bt/∆T c. As in the static case, a careful
choice of the learning rate η ∈ (0, 1) is required to ensure that
this fixed-point iteration is well-defined. Moreover, the BRD-
GFNE can be interrupted at any episode kf > 1 (producing
an ε-GFNE, ε > 0) and, if necessary, a central coordinator
assigned to project the resulting strategy profile Kkf onto the
feasible set F †w(X )∩UG∩(U1×· · ·×UNP ). Finally, we note
that such considerations can be disregarded when the game is
not generalised, that is, when X = RNx and UG =

∏
p∈P RN

p
u .

III. BEST-RESPONSE DYNAMICS VIA SYSTEM LEVEL
SYNTHESIS

In this section, we present an approach for GFNE seeking in
(stationary) stochastic dynamic games. Firstly, we introduce the
system level parametrisation of the players’ feedback policies
(Kp, p ∈ P) and reformulate their best-response mappings
(BRp, p ∈ P) through finite-dimensional robust optimisation
problems. Then, a modified BRD-GFNE procedure is proposed
and its convergence properties are investigated.

We focus on NP -players linear-quadratic stochastic games
GLQ
∞ = (P,X , {Up}p∈P ,W , {Jp}p∈P) with dynamics

xt+1 = Axt +
∑
p∈P

Bpupt + wt, x0 given, (20)

and objective functionals

Jp(up,u−p) = E

[ ∞∑
t=0

(
‖Cpxt‖22 + ‖

∑
p̃∈P D

pp̃up̃t ‖22
)]
,

(21)
defined by matrices Cp ∈ RNz×Nx and Dpp̃ ∈ RNz×N p̃u with
dimension Nz ≥ Nx +Nu. The following assumptions ensure
that GFNE of GLQ

∞ are admissible (that is, stabilising):

Assumption 3. For each player p ∈ P ,

a) The pair (A,Bp) is stabilisable;

b) The pair (Cp, A) is detectable;

c) The matrix Dpp is full column rank, i.e., DppTDpp ∈ SN
p
u

++.
Moreover, Dpp̃TCp = 0 = Cp

T

Dpp̃ for all p̃ ∈ P .

Finally, the constraint sets X and Up (∀p) are convex polyhedra
and contain their respective origins: 0 ∈ X and 0 ∈ Up.

The class GLQ
∞ describe problems in which NP non-cooperative

agents have to agree on stationary policies that jointly stabilise

a global system, robustly to the noise process, while penalising
state- and input-deviations differently. While representative of
many practically relevant problems, this choice is not restrictive.
Our derivations should follow similarly for any collection of
cost functions {Lp}p∈P satisfying Assumption 2.

A. System-level best-response mappings

System level synthesis (SLS, [36]) is a novel methodology for
controller design which lifts the search for optimal controllers
into the search of optimal closed-loop responses to disturbances.
Under this approach, the synthesis of stationary control policies
can be equivalently posed as the solution to scalable numerical
problems, even when operational constraints on the state and
control signals need to be enforced. Additionally, the method
allows for constraints to be enforced directly on the structure of
the control policies. In this section, we present a system-level
parametrisation for the best-response mappings in GLQ

∞ .

We start by assuming a stabilising profile (K1, . . . ,KNP ),
guaranteed by Assumption 3. Each policy is associated with
a transfer matrix K̂p ∈ RH∞, K̂p =

∑∞
n=0

1
znΦpn, which

defines the state-feedback ûp = K̂px̂ in the frequency domain.
Considering the linear dynamics Eq. (20),

zx̂ = Ax̂+
∑
p∈P B

pûp + ŵ; (22a)

ûp = K̂px̂, (∀p ∈ P), (22b)

the signals (x̂, û1, . . . , ûNP ) can be expressed in terms of ŵ,
x̂
û1

...
ûNP

 =


(zI −A−

∑
p∈P B

pK̂p)−1

K̂1(zI −A−
∑
p∈P B

pK̂p)−1

...

K̂NP (zI −A−
∑
p∈P B

pK̂p)−1

 ŵ;

=


Φ̂x
Φ̂1
u
...

Φ̂NP
u

 ŵ, (23)

where the introduced transfer matrices (Φ̂x, Φ̂1
u, . . . , Φ̂

NP
u ) are

denoted as system level responses or closed-loop maps. Under
this representation, the following result holds.

Theorem 4 (System level parametrisation, [36]). Consider the
dynamics Eq. (22) under state-feedback ûp = K̂px̂ (∀p ∈ P).
The following statements are true:

a) The affine space

[
zI −A −B1 · · · −BNP

]


Φ̂x
Φ̂1
u
...

Φ̂NP
u

 = I, (24)

with Φ̂x, Φ̂
1
u, . . . , Φ̂

NP
u ∈ 1

zRH∞, parametrizes all system
responses from ŵ to (x̂, û1, . . . , ûNP ) achievable by
internally stabilising policies (K̂1, . . . , K̂NP ).
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b) Any response (Φ̂x, Φ̂
1
u, . . . , Φ̂

NP
u ) satisfying Eq. (24) is

achieved by the policies K̂p = Φ̂p
uΦ̂−1

x (∀p ∈ P), which
are internally stabilising and can be implemented as

zξ̂ = Φ̃xξ̂ + x̂; (25a)

ûp = Φ̃p
uξ̂, (25b)

with Φ̃x = z(I − Φ̂x) and Φ̃p
u = zΦ̂p

u.

Proof. To simplify the notation, we momentarily define the ma-
trices B := [B1 B2 · · · BNP ], Φ̂u :=

[
Φ̂1T

u Φ̂2T

u · · · Φ̂
NT
P

u

]T
,

and K̂ :=
[
K̂1T K̂2T · · · K̂NT

P

]T
. For the first statement,

consider internally stabilising policies (K̂1, . . . , K̂NP ) such
that ûp = K̂px̂ (∀p ∈ P). Then, from Eq. (23), we have that[
zI −A −B

] [ (zI −A−BK̂)−1

K̂(zI −A−BK̂)−1

]
= (zI −A)(zI −A−BK̂)−1−BK̂(zI −A−BK̂)−1

= (zI −A−BK̂)(zI −A−BK̂)−1

= I.

For the second statement, we first show that K̂ achieves the
desired response, and then that these policies are internally
stabilising. Note that Eq. (24) implies that Φ̂x has the leading
spectral component Φx,1 = INx , which is invertible, and thus
Φ̂−1
x exists. Then, K̂ = Φ̂uΦ̂−1

x is well-defined, and we have

x̂ = (zI −A−BΦ̂uΦ̂−1
x )−1ŵ

= Φ̂x

(
(zI −A)Φ̂x −BΦ̂u

)−1

ŵ

= Φ̂xŵ,

due to Eq. (24), and û = K̂x̂ = Φ̂uΦ̂−1
x Φ̂xŵ = Φ̂uŵ.

Thus, K̂ achieves the response (Φ̂x, Φ̂u), or, equivalently,
(K̂1, K̂2, . . . , K̂NP ) achieve (Φ̂x, Φ̂

1
u, . . . , Φ̂

NP
u ). To show

that this policy is internally stabilising, consider its equivalent
representation K̂ = Φ̃u(zI−Φ̃x)−1Φ̃y with Φ̃x = z(I−Φ̂x),
Φ̃u = zΦ̂u, and Φ̃y = I , as depicted in Figure 2.

Figure 2. Feedback structure for the policy K̂ = Φ̃u(zI − Φ̃x)−1Φ̃y =

Φ̂p
uΦ̂−1

x , equivalent to the internal representation in Eq. (25).

Introducing external perturbations {δx, δu, δξ} ⊆ `∞ into the
game, it suffices to verify that the transfer matrices from
(δ̂x, δ̂u, δ̂ξ) to (x̂, û, ξ̂) are stable. In this case, we havex̂û

ξ̂

 =

Φ̂x Φ̂xB Φ̂x(zI −A)

Φ̂u I + Φ̂uB Φ̂u(zI −A)
1
z I

1
zB

1
z (zI −A)

δ̂xδ̂u
δ̂ξ

 . (26)

Since Φ̂x, Φ̂u ∈ 1
zRH∞, the transfer matrices in Eq. (26) are

all stable. We thus conclude that the policy K̂ is internally
stabilising, and so are the policies (K̂1, K̂2, . . . , K̂NP ).

We refer to the system level responses through their kernels,
Φx = (Φx,n)n∈N ∈ `2(N) and Φp

u = (Φpu,n)n∈N ∈ `2(N), for
all p ∈ P . Due to strict causality, Φx,0 = 0 and Φpu,0 = 0.
From Theorem 4, the operators {Kp ∈ Cp}p∈P and the transfer
matrices {K̂p ∈ RH∞}p∈P are equivalent representations of
the feedback policies. Hence, provided there is no confusion, we
use exclusively the first notation. In particular, Kp = Φp

uΦ−1
x

(p ∈ P) denotes the policy parametrised by (Φ̂x, Φ̂
p
u) and

K = (Φ1
u, · · · ,ΦNP

u )Φ−1
x denotes the corresponding profile.

A time-domain characterisation of K is given in the following.

Corollary 4.1. A policy Kp = Φp
uΦ−1

x (∀p ∈ P) is defined
by the kernel Φp = Φp

u ∗Φ−1
x , and implemented as

ξt = −
∑t
τ=1 Φx,τ+1ξt−τ + xt; (27a)

upt =
∑t
τ=0 Φpu,τ+1ξt−τ , (27b)

using an auxiliary internal state ξ = (ξn)n∈N with ξ0 = x0.

The system level parametrisation enables a methodology for
policy synthesis consisting of searching the space of stabilising
policies (in)directly through (Φx,Φ

p
u), p ∈ P . In particular,

this parametrisation can be leveraged to reformulate the best-
response dynamics maps in GLQ

∞ as tractable numerical pro-
grams. In this direction, consider that players design stabilising
policies K = (K1, . . . ,KNP ) by choosing their desired
system level responses Φu = (Φ1

u, . . . ,Φ
NP
u ) simultaneously.

From the affine space Eq. (24), the signal Φx, common to all
players, satisfies the (deterministic) linear dynamics

Φx,n+1 = AΦx,n +
∑
p∈P

BpΦpu,n, Φx,1 = INx , (28)

or Φx = FΦΦu given the causal affine operator

FΦ : Φu 7→ (I − S+A)−1
(∑
p∈P

S+B
pΦp

u + δINx

)
, (29)

Using Parseval’s Theorem [42], we substitute Eq. (23) into Eq.
(21) to redefine the objective functionals of GLQ

∞ as

Jp(Φp
u,Φ

−p
u )

= E
[ ∞∑
n=1

(
‖CpΦx,nwn‖2F + ‖

∑
p̃∈P D

pp̃Φp̃u,nwn‖2F
)]

=

∞∑
n=1

(
‖CpΦx,nΣ

1
2
w‖2F + ‖

∑
p̃∈P D

pp̃Φp̃u,nΣ
1
2
w‖2F

)
.

The game GLQ
∞ thus induces a system-level dynamic game,

GΦ
∞ := (P,Cx, {Cpu}p∈P ,W , {Jp}p∈P), (30)
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defining the problem in which players p ∈ P each plans a
closed-loop response Φp

u ∈ U
p
Φ(Φ−pu ) ⊆ Cpu to minimise its

individual cost functional Jp : C1
u × · · · × CNPu → R. Here,

the set-valued mappings UpΦ : C−pu ⇒ Cpu are defined as

UpΦ(Φ−pu ) := {Φp
u ∈ Cpu : (Φp

u,Φ
−p
u ) ∈ F †Φ(Cx),

Φp
u ∗w ∈ Up(Φ−pu ∗w)},

which incorporate the constraints Up from the original GLQ
∞ .

The sets (Cx,Cpu) are designed to enforce the policy constraints
Kp ∈ Cp directly through the kernels (Φx,Φ

p
u): They are

related as Cpu = {KpCx : Kp ∈ Cp}. We refer to a joint
response Φu = (Φ1

u, . . . ,Φ
NP
u ) ∈ Cu, Cu = C1

u × · · · × CNPu ,
as a system-level strategy profile. Finally, the set of (open-loop)
system-level GNEs for this game is denoted as ΩGΦ

∞
.

The best-response mappings for GΦ
∞ take the form

BRpΦ(Φ−pu ) := arg min
Φp

u∈UpΦ(Φ−pu )

Jp(Φp
u,Φ

−p
u ),

consisting of the set of closed-loop maps Φp
u which are best-

responses to the maps of other players, Φ−pu = (Φp̃
u)p̃∈P\{p}.

They are solutions to the system level synthesis problem

minimize
Φp

u

∞∑
n=1

(
‖CpΦx,nΣ

1
2
w‖2F +

∥∥∥∑
p̃∈P

Dpp̃Φp̃u,nΣ
1
2
w

∥∥∥2

F

)
(31a)

subject to
∀n∈N+

Φx,n+1 = AΦx,n +
∑
p̃∈P B

p̃Φp̃u,n, (31b)

(Φx∗w)n ∈ X , (Φpu∗w)n ∈ Up,(
(Φpu∗w)n, (Φ

−p
u ∗w)n

)
∈ UG ,

(31c)

Φx ∈ Cx, Φp
u ∈ Cpu, (31d)

Φx,1 = INx . (31e)

Collectively, the mapping BRΦ : Cu ⇒ Cu, defined by
BRΦ(Φu) = BR1

Φ(Φ−1
u )× · · · ×BRNPΦ (Φ−NPu ), is the joint

best-response to a system-level strategy profile Φu. As before,
the GNEs of GΦ

∞ are equivalent to the fixed-points of this map,
ΩGΦ
∞

= {Φ∗u ∈ Cu : Φ∗u ∈ BRΦ(Φ∗u)}. Considering how
GLQ
∞ induces GΦ

∞, a relationship can be established between the
best-responses BR and BRΦ and, consequently, between their
fixed-points, ΩKGLQ

∞
and ΩGΦ

∞
. In Section III-B, we formalise

this relationship and propose a learning dynamics for GFNE
seeking based on the system-level best-response mappings.

Remark 1. Problem (31) is independent of the matrix Σ
1
2
w due

to its linear-quadratic structure and the fact that Σw ∈ SNx .
Hence, we remove it from Jp (∀p) to simplify notation.

The best-responses {BRpΦ}p∈P are still intractable: i) They
are defined by infinite-dimensional problems with no general
solution and ii) that require full knowledge of the noise process
(wn)n∈N to formulate the constraints UpΦ. In the following, we
tackle both issues and provide a class of finite-dimensional
robust optimisation programs that approximate Problem (31).
We conclude the section by presenting a class of system level
constraints which enforce a richer feedback information pattern.

Finite-horizon approximation: The programs in {BRpΦ}p∈P
can be made finite-dimensional by restricting the closed-loop
maps to the set of finite-impulse responses (FIR),

Cx = {Φx ∈ `2[0, N ] : Φx,n ∈ Cx,n, n∈[0, N), Φx,N = 0};
Cpu = {Φp

u ∈ `2[0, N) : Φpu,n ∈ Cpu,n, n∈[0, N)},

given horizon N ∈ [2,∞). We enforce Φx ∈ Cx and Φp
u ∈ Cpu

in Problem (31) by adding the terminal constraint Φx,N = 0,
and restricting the spectral factors to satisfy (Φx,n ∈ Cx,n)Nn=1

and (Φpu,n ∈ Cpu,n)N−1
n=1 . The constraint sets Cx,n ⊆ RNx×Nx

and Cpu,n ⊆ RNu×Nx (∀p) have no restriction other than being
compact convex sets. The resulting problems are of the form

minimize
Φp

u=(Φpu,n)N−1
n=1

N∑
n=1

(
‖CpΦx,n‖2F + ‖

∑
p̃∈P D

pp̃Φp̃u,n‖2F
)

(32a)

subject to
∀n∈[1,N)

Φx,n+1 = AΦx,n +
∑
p̃∈P B

p̃Φp̃u,n, (32b)

(Φx∗w)n ∈ X , (Φpu∗w)n ∈ Up,(
(Φpu∗w)n, (Φ

−p
u ∗w)n

)
∈ UG ,

(32c)

Φx,n ∈ Cx,n, Φpu,n ∈ Cpu,n, (32d)

Φx,1 = INx , Φx,N = 0, (32e)

which define finite-dimensional convex programs that can be
solved numerically. Since (Cx,Cpu) are finite-dimensional, the
operators (FΦ,K) and the convolutions in Eq. (32c) can be
represented by matrix multiplications: Consider any kernel
Φ ∈ {Φx} ∪ {Φp,Φp

u}p∈P and some signal z ∈ `∞. Then,

zout = Φ ∗ z ⇐⇒ zout = MΦz,

given block-Toeplitz matrix MΦ = [Φi−j ]i∈[1,2N+1],j∈[1,N+1]

and (z, zout) being a vector representation of these signals,
that is, z = col(z0, . . . , zN ) and zout = col(zout

0 , . . . , zout
2N ).

Moreover, zout
n = (Φ∗z)n = [MΦ]nz, where [MΦ]n is the n-th

block-row of MΦ. Thus, Problem (32) can be reformulated into
a program requiring only matrix algebra. Finally, we remark that
policies (Kp, p ∈ P) are implemented either by using Corollary
4.1 or by directly computing kernels Φp = ([MΦpu ]nΦ−1

x )n∈N.

Although realising Problem (31) into a tractable program, the
Problem (32) is only feasible when the pair (A,Bp) is full-
state controllable. This is a difficult requirement in multi-agent
settings, as often Np

u � Nx for all p ∈ P , leading to Problem
(32) becoming overdetermined. Furthermore, enforcing FIR
constraints is known to result in deadbeat policies: Control
actions are excessively large in magnitude for small N <∞.
Alternatively, we restrict the system level responses to the sets

Cx = {Φx∈`2[0, N ] : Φx,n∈Cx,n, n∈[0, N), ‖Φx,N‖2F ≤ γ};

Cpu = {Φp
u∈`2[0, N) : Φpu,n∈Cpu,n, n∈[0, N)},

with ‖Φx,N‖2F =
∑
i σi(Φx,N )2 ≤ γ for some factor γ ∈ (0, 1)

and σi(·) denoting the i-th largest singular value of a matrix.
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These are reffered to as the set of approximately FIR for N > 0.
The p-th player best-response map thus takes the form

minimize
Φp

u=(Φpu,n)N−1
n=1

N−1∑
n=1

(
‖CpΦx,n‖2F+‖

∑
p̃∈P D

pp̃Φp̃u,n‖2F
)

+ ‖CpΦx,N‖2F
(33a)

subject to
∀n∈[1,N)

Φx,n+1 = AΦx,n+
∑
p̃∈P B

p̃Φp̃u,n, (33b)

(Φx∗w)n ∈ X , (Φpu∗w)n ∈ Up,(
(Φpu∗w)n, (Φ

−p
u ∗w)n

)
∈ UG ,

(33c)

Φx,n ∈ Cx,n, Φpu,n ∈ Cpu,n, (33d)

Φx,1 = INx , ‖Φx,N‖2F ≤ γ. (33e)

The solutions to Problem (33) approximate those of the infinite-
horizon Problem (31): With respect to N , the performance of
the former converges to that achieved by the latter [36]. In
this case, feasibility only requires (A,Bp) stabilisable and a
sufficiently large horizon N to ensure that ‖Φx,N‖2F ≤ γ is
achievable for some Φp

u ∈ U
p
Φ(Φ−pu ). Computationally, this is

still a finite-dimensional convex problem which can be solved
numerically. Here, we let B̂R

p

Φ : C−pu ⇒ Cpu be the solutions of
Problem (33) parametrised by Φ−pu . The map B̂RΦ : Cu ⇒ Cu,
B̂RΦ(Φu) = B̂R

1

Φ(Φ−1
u )× · · ·× B̂R

NP

Φ (Φ−NPu ), is the joint
(approximately)best-response to the system-level profile Φu.

Conversely to BRΦ, the fixed-points of B̂RΦ do not coincide
with the set of GNEs ΩGΦ

∞
, but are rather contained in the

set of ε-GNEs ΩεGΦ
∞

for some equilibrium gap ε > 0. This
is clear from the fact that the original Problem (31) and the
approximation Problem (33) have different optimal values.
Under certain conditions, this fact can be shown explicitly.

Theorem 5. Consider a fixed-point Φε
u ∈ B̂RΦ(Φε

u) and
assume that ‖Φ?x,N‖2F ≤ γ for Φ?

x = FΦΦ?
u obtained from

the original best-response Φ?
u ∈ BRΦ(Φε

u). Then, the profile
Φε
u = (Φ1ε

u , . . . ,Φ
NεP
u ) is an ε-GNE of GΦ

∞ satisfying

Jp(Φpε

u ,Φ
−pε
u ) ≤ min

Φp
u∈UpΦ(Φ−p

ε
u )

Jp(Φp
u,Φ

−pε
u ) + ε (34)

with ε = maxp∈P γJ
p(Φpε

u ,Φ
−pε
u ) for every player p ∈ P .

The equilibrium gap associated with Φε
u ∈ B̂RΦ(Φε

u) is thus
proportional to the parameter γ, assuming that the terminal
constraint Eq. (33e) also holds for solutions to the original
Problem (31). Hereafter, UpΦ : C−pu ⇒ Cpu (∀p) are assumed
to incorporate the pair (Cx, Cpu) defining the set of (soft-
constrained) FIR approximations defined above for a N > 0.
We write UpΦ,N whenever this needs to be made explicit (e.g.,
to distinguish this choice from a more general Cx and Cpu).

Robust operational constraints: From Assumption 3, the sets
X , Up, and UG , can be expressed by linear inequalities,

X = {xt ∈ RNx : Gxxt ≤ gx};
Up = {upt ∈ RN

p
u : Gpuu

p
t ≤ gpu};

UG = {ut ∈
∏
p̃∈P RN

p̃
u :
∑
p̃∈P G

p̃
Gu

p̃
t ≤ gG},

given some matrices Gx ∈ RNX×Nx , Gpu ∈ RNUp×N
p
u and

Gp̃G ∈ R
NUG×N

p̃
u (∀p̃ ∈ P), and vectors gx ∈ RNX≥0 , gpu ∈ R

NpU
≥0 ,

and gG ∈ R
NUG
≥0 . The map Up(u−p) is then equivalent to the

actions up = Φp
u ∗w whose associated response Φp

u satisfy

[Gx]i(Φx ∗ w)n ≤ [gx]i, i = 1, . . . , NX ; (35)
[Gpu]j(Φ

p
u ∗ w)n ≤ [gpu]j , j = 1, . . . , NUp ; (36)∑

p̃∈P [Gp̃G ]l(Φ
p̃
u ∗ w)n ≤ [gG ]l, l = 1, . . . , NUG , (37)

with ([Gx]i, [gx]i), ([Gpu]j , [g
p
u]j), and ([Gp̃G ]l, [gG ]l) denoting,

respectively, the i-th, j-th, and l-th rows of the corresponding
matrices and vectors. In this work, players are assumed to
synthesise policies that satisfy these constraints for anyw ∈W .
At the expense of conservativeness, we cast Problem (33) as
a robust optimization problem by considering the worst-case
realisation of the noise. Specifically, we reformulate Eq. (35),

N∑
n′=0

sup
w∈W

[Gx]iΦx,n′w ≤ [gx]i, i = 1, . . . , NX (38)

and similarly for Eqs. (36)–(37), then exploit our knowledge
of W to obtain an analytical solution for the supremum.

A common instance of GLQ
∞ considers the problem in which

(wn)n∈N is uniformly bounded. In these problems, the inequal-
ity Eq. (38) can be expressed in terms of a dual norm on the
appropriate vector space. We highlight two important cases.

• W is an ellipsoid centred at zero. Formally, the set is

W = {wt ∈ RNx : ‖Pwt‖2 ≤ 1},

given a matrix P ∈ SNx++. This corresponds to noise
processes with uniformly bounded energy, as encoded
by ‖ · ‖2. For such cases, Eqs. (35)–(37) can be enforced
by the second-order conic (SOC) constraints∑N

n=0

∥∥([Gx]iΦx,nP
−1)T

∥∥
2
≤ [gx]i, (∀i);∑N−1

n=0

∥∥([Gpu]jΦ
p
u,nP

−1)T
∥∥

2
≤ [gpu]j , (∀j);∑N−1

n=0

∥∥∑
p̃∈P([Gp̃G ]lΦ

p̃
u,nP

−1)T
∥∥

2
≤ [gG ]l, (∀l).

• W is a polyhedron, symmetric around zero. Formally,

W = {wt ∈ RNx : ‖Pwt‖∞ ≤ 1},

given a full-rank matrix P ∈ RNW×Nx . This corresponds
to noise processes with uniformly bounded intensity, as
encoded by ‖ · ‖∞. For such cases, Eqs. (35)–(37) can be
enforced by the first-order conic constraints∑N

n=0

∥∥([Gx]iΦx,nP
†)T
∥∥

1
≤ [gx]i, (∀i);∑N−1

n=0

∥∥([Gpu]jΦ
p
u,nP

†)T
∥∥

1
≤ [gpu]j , (∀j);∑N−1

n=0

∥∥∑
p̃∈P([Gp̃G ]lΦ

p̃
u,nP

†)T
∥∥

1
≤ [gG ]l, (∀l).

Remark 2. If X = RNx , Up = RNpu , and UG =
∏
p∈P RN

p
u ,

these constraints are trivially satisfied for any w ∈W , and thus
can be removed from Problem (31). Conversely, if W = RNx
when either X , Up, or UG is bounded, then no stabilising
policy can enforce those constraints for all possible w.
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Structural constraints: The sets (Cx,n, Cpu,n)n∈N+ (∀p ∈ P)
are designed to impose some structure directly on the policy
Kp (Corollary 4.1), often in the form of sparsity constraints.
An important class of such structural constraints encodes
information patterns incurred by the presence of actuation
and sensing delays: Let Kp ∈ Cp (∀p) satisfy the restrictions

Cp = {Kp ∈ L(X ,Up) : Actions [Bp(Kpx)t]i respectively
affect and feedback the component
[xt]i with the delays da, ds > 0},

(39)
and consider the operators Sx : Φx 7→ (Sx,n�Φx,n)n∈N+ and
Spu : Φp

u 7→ (Spu,n � Φpu,n)n∈N+
(∀p), given the matrices

(Sx,n)n∈N+
=
(
Sp(Amax (0,bn−dads

c))
)
n∈N+

,

(Spu,n)n∈N+
=
(
Sp(BpTAmax (0,bn−dads

c))
)
n∈N+

,

with Sp(·) denoting the sparsity pattern of a matrix1. It can
be shown that Kp = Φp

uΦ−1
x ∈ Cp (∀p) if its parametrisation

satisfy (Φx,n ∈ Cx,n)n∈N+ and (Φpu,n ∈ Cpu,n)n∈N+ with

Cx,n = {Φx,n ∈ RNx×Nx : Φx,n = Sx,n � Φx,n}; (40a)

Cpu,n = {Φpu,n ∈ RN
p
u×Nx : Φpu,n = Spu,n � Φpu,n}. (40b)

The constraints Eq. (40) enforce that the closed-loop response
to the noise obeys an information pattern induced by the
dynamics of the game GLQ

∞ . Specifically, [Sx,n]i,j = 0 (re-
spectively, [Spu,n]i,j = 0) indicates that any disturbance to the
j-th component of the state, [xt]j , does not affect [xt+n]i
(does not feedback into action [upt+n]i). Finally, note that
(Cx,n, Cpu,n)n∈N+ are compact convex sets, as they correspond
to the kernels of the linear operators (I − Sx) and (I − Spu).

The ability to impose a desired policy structure using convex
constraints is a central feature of the SLS framework. In the
context of dynamic games, it allows for describing and, most
importantly, solving problems where players have asymmetric
information patterns; a major challenge for feedback Nash
equilibrium problems [41, 43]. For (Cx,n, Cpu,n)n∈N+ from Eq.
(40), conditions for the existence of GFNE (i.e., ΩKGLQ

∞
6= ∅), can

be stated in terms of the delay parameters da and ds. Unless
stated otherwise, the mappings {BRpΦ}p∈P (and {B̂R

p

Φ}p∈P )
are assumed to include these constraints with da = ds = 1 .

B. System-level best-response dynamics

A learning dynamics based on the system-level best-responses
{BRpΦ}p∈P relies on the following central result.

Theorem 6. A policy profile K∗ = (Φ1∗

u , . . . ,Φ
N∗P
u )Φ∗

−1

x ∈ C,
is a GFNE of GLQ

∞ if Φ∗u ∈ BRΦ(Φ∗u), or, equivalently,

Φp∗

u ∈ BR
p
Φ(Φ−p

∗

u ), ∀p ∈ P. (41)

Proof. Consider an arbitrary fixed-point Φ∗u ∈ BRpΦ(Φ∗u).
From Theorem 4, we have Φ∗x = FΦΦ∗u. Now, consider

1The operator Sp(A) produces a binary matrix such that [Sp(A)]i,j = 1
if [A]i,j 6= 0 and [Sp(A)]i,j = 0 otherwise.

policies Kp∗ = Φp∗

u (Φ∗x)−1, p ∈ P . Clearly, Φp∗

u = Kp∗Φ∗x.
As a consequence, for any w ∈W ,

Φp∗

u w = Kp∗Φ∗xw ⇐⇒ up
∗

= Kp∗x∗.

and, by definition, Φp∗

u ∈ U
p
Φ(Φ−p

∗

u ) imply up
∗ ∈ Up(u−p∗).

Thus, u∗ is the open-loop realisation of the policy K∗. Finally,
since Jp(up

∗
,u−p

∗
) ∼= Jp(Φp∗

u ,Φ
−p∗
u ) and Φ∗u ∈ ΩGΦ

∞
, we

conclude that no player can obtain an admissible policy that
unilaterally improves its cost, that is, K∗ ∈ ΩKGLQ

∞
.

The relationship between BR and BRΦ implies that a GFNE of
GLQ
∞ can be obtained analytically from a GNE of GΦ

∞. This fact
allows us to adapt the BRD-GFNE procedure (Algorithm 3) and
propose a procedure for GFNE seeking in constrained infinite-
horizon dynamic games based on the mappings {BRpΦ}p∈P .
This system-level best-response dynamics (SLS-BRD) approach
is given in Algorithm 4. We remark on some technical aspects:

• The pair (Φp
x,k,Φ

p
u,k) defines the p-th player’s parametri-

sation after k ∈ N updates, that is, Φp
x,k = (Φpx,k,t)t∈N

and Φp
u,k = (Φpu,k,t)t∈N. The update index k ∈ N should

not be mistaken for the stage index t ∈ N.

• Updating the policy Kp
k+1 consists of either employing

Corollary 4.1 with maps (Φp
x,k+1,Φ

p
u,k+1), or directly

computing its kernel Φp
k+1 = ([MΦpu,k+1

]nΦ−1
x,k+1)n∈N.

• Responses {Φp
x,k}p∈P are most likely distinct at k <∞,

that is, Φp
x,k 6= Φp̃

x,k for p 6= p̃. Consequently, the system
level parametrisation (Eq. 24) might not hold for the
profile Kk =

(
Φ1
u,k(Φ1

x,k)−1, . . . ,ΦNP
u,k(ΦNP

x,k)−1
)

and
this could lead to stability issues. However, this policy still
satisfies a robust variant of Theorem 4 when the distances
‖Φp

x,k − FΦΦu,k‖ (∀p ∈ P) are sufficiently small [36].

The SLS-BRD induces an operator TΦ = (1− η)I + ηBRΦ,
which defines the global update Φu,k+1 from Φu,k. As before,
TΦ and BRΦ share the same fixed-points: The GNEs ΩGΦ

∞
.

From Theorem 6, convergence to a response Φ∗u ∈ TΦ(Φ∗u)
then implies convergence to a policy K∗ ∈ ΩKG∞ . Hence, this
learning dynamics is a formal procedure for GFNE seeking.

Algorithm 4: System-level BRD (SLS-BRD)

Input: Game GLQ
∞ := (P,X , {Up}p∈P ,W , {Jp}p∈P)

Output: GFNE K∗ = (K1∗ , . . . ,KN∗P )

1 Initialize K0 = (K1
0 , . . . ,K

NP
0 ) and k = 0;

2 for t = 0, 1, 2, . . . do
/* Players apply actions {upk,t = Kp

kxk,t}p∈P */

3 if Φu,k ∈ BRΦ(Φu,k) then return Kk;
4 if t = (k+1)∆T then
5 for p ∈ P do
6 Update Kp

k+1 by computing the kernels

Φp
u,k+1 := (1−η)Φp

u,k + ηBRpΦ(Φ−pu,k),

Φp
x,k+1 := FΦ(Φp

u,k+1,Φ
−p
u,k)

7 k := k + 1;
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In this general form, Algorithm 4 is still unpractical due to
{BRpΦ}p∈P being intractable. The SLS-BRD can be adapted
to consider instead {B̂R

p

Φ}p∈P : The players’ updates become

Φp
u,k+1 := (1−η)Φp

u,k + ηB̂R
p

Φ(Φ−pu,k).

The global update rule induced by this modified algorithm is
T̂Φ = (1− η)I + ηB̂RΦ. In this case, the fixed-points of T̂Φ

coincide with those of B̂RΦ. As such, this (approximately)best-
response dynamics is a procedure for ε-GFNE seeking, ε > 0.

Convergence of the SLS-BRD: The convergence of Algorithm
4 depends on BRΦ (or B̂RΦ, for its tractable version) being
at least non-expansive (Theorems 2–3). Formally,

Theorem 7. Let the map B̂RΦ : Cu ⇒ Cu be L
B̂RΦ

-Lipschitz,
with L

B̂RΦ
< 1. Then, the SLS-BRD Φu,k+1 = T̂Φ(Φu,k)

converge to the unique ε-GNE Φ∗u ∈ ΩεGΦ
∞

with rate

‖Φu,k −Φ∗u‖`2
‖Φu,0 −Φ∗u‖`2

≤
(
(1−η)− ηL

B̂RΦ

)k
(42)

from any feasible initial Φu,0.

In general, determining a Lipschitz constant for such mappings
is challenging. However, for linear-quadratic games GLQ

∞
where W is a polyhedron, best-responses are piecewise-affine
operators and their Lipschitz properties are straightforward. In
the following, we use this fact to establish some conditions for
convergence of the SLS-BRD for a specific class of games.

Consider the (approximately)best-response maps {B̂R
p

Φ}p∈P
and assume N sufficiently large to ensure that ‖Φx,N‖2F < γ
is strictly satisfied. For notational convenience, let us introduce
the operators F pΦ = (I −S+A)−1S+B

p (∀p ∈ P) and signal
F 0

Φ = (I −S+A)−1δINx , and the objective-related mappings
Cp : Φx 7→ (CpΦx,n)n∈N and Dpp̃ : Φp̃

u 7→ (Dpp̃Φp̃u,n)n∈N,
with Dp0 = 0. Moreover, for all p, p̃ ∈ P , define the operators

Hpp̃ = (CpF pΦ +Dpp)T(CpF p̃Φ +Dpp̃), (43)

and Hp,−p = (Hp,p̃)p̃∈P . Because {Φp
u}p∈P are FIR, all the

elements defined above have equivalent matrix representations.
Using this notation, Problem (33) can be reformulated as

minimize
Φp

u∈UpΦ(Φ−pu )
Tr
[
Φp
u
THppΦp

u

+ 2(
∑
p̃∈P\{p}H

pp̃Φp̃
u +Hp0)TΦp

u

]
(44)

The maps BRp(Φ−pu ), p ∈ P , thus correspond to the solution
of quadratic programs with convex constraints UpΦ(Φ−pu ), for
Φ−pu ∈ C−pu . In the case of W = {wt ∈ RNx : ‖wt‖∞ ≤ 1},
and without structural constraints, that is, Sx = I and Spu = I ,

UpΦ(Φ−pu ) = {Φp
u ∈ `2[0, N) :

Φx,n+1 = AΦx,n+
∑
p̃∈P B

p̃Φp̃u,n, Φx,1 = INx ,∑N
n=0

∥∥([Gx]iΦx,n)T
∥∥

1
≤ [gx]i,∑N−1

n=0

∥∥([Gpu]jΦ
p
u,n)T

∥∥
1
≤ [gpu]j ,∑N−1

n=0

∥∥∑
p̃∈P([Gp̃G ]lΦ

p̃
u,n)T

∥∥
1
≤ [gG ]l}.

(45)

Using standard techniques from optimisation, the constraints Eq.
(45) can be incorporated into Problem (44) as linear inequalities.
The solutions for these problems, that is, the best-responses
{B̂R

p

Φ}p∈P , are thus piecewise affine in Φ−pu ∈ C−pu [44].
Consequently, also B̂RΦ must be piecewise affine. A local
Lipschitz constant can then be derived for each region of
C−pu that leads to a subset of the operational constraints being
active. For non-generalised games (i.e., when X = RNx and
UG =

∏
p∈P RN

p
u ), the structure of this affine mapping can be

exploited to derive a global Lipschitz constant for B̂RΦ.

Theorem 8. Consider X = RNx and UG =
∏
p∈P RN

p
u . Then,

The map B̂RΦ is L
B̂RΦ

-Lipschitz with

L
B̂RΦ

=
√∑

p∈P(Lp
B̂RΦ

)2, (46)

given the player-specific constants

Lp
B̂RΦ

=
(
1 + κ(Hpp)

)
‖(Hpp)†Hp,−p‖2→2, (47)

with condition number κ(Hpp) = ‖(Hpp)†‖2→2‖Hpp‖2→2.

The proof of Theorem 8 is extensive: The reader is referred
to Appendix C for the full details. Importantly, this Lipschitz
constant is not tight and thus L

B̂RΦ
< 1 using Eq. (46) is only

a sufficient (but not necessary) condition for Theorem 7 to
hold in practice. Regardless, it highlights some intuitive, but
non-trivial, facts about the convergence of the SLS-BRD:

• The condition L
B̂RΦ

< 1 is implies that the block-operator
H = [Hpp̃]p,p̃∈P is diagonally dominant. This highlights
the relationship between the SLS-BRD and the class of
Jacobi iterative methods, where diagonal dominance of
the linear system being solved is a strict requirement.

• The convergence rate of the SLS-BRD is inversely
proportional to ‖Dpp‖22 (∀p) through Hpp. As such, faster
convergence is expected for games in which players apply
strong penalties to their own actions.

• The convergence rate of the SLS-BRD depends on the
number of players: Let Lp

B̂RΦ
=
√
α+ βp for all p ∈ P

given some α, βp > 0. Then, L2
B̂RΦ

= (αNp)
2
∑
p β

p. In
large-scale games, players might need to become more
conservative in order to ensure that B̂R is a contraction.

• The convergence rate of the SLS-BRD is dominated by
the slowest player: Whenever there exists a p ∈ P such
that Lp

B̂RΦ
� Lp̃

B̂RΦ
for all p̃ ∈ P , then L

B̂RΦ
≈ Lp

B̂RΦ
.

• The norms ‖Hpp‖2→2 = ‖CpF pΦ +Dpp‖22→2 increase
with the FIR horizon N , specially for unstable games. In
some cases, players might need to proportionally decrease
the state-penalties Cp to ensure (or improve) convergence.

At the cost of interpretability, similar Lipschitz constants as
in Eqs. (46)–(47) can be obtained also when (X ,UG ,Up) and
P are general, and when structural constraints are present.
Moreover, we remark that Theorem 8 is obtained under the
assumption that ‖Φx,N‖2F < γ holds strictly. The best-response
maps {B̂R

p

Φ}p∈P when this constraint is active, or when W
is an ellipsoid, become quadratically-constrained quadratic
programs and their Lipschitz properties are less intuitive.
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IV. EXAMPLES

In the following, we demonstrate the SLS-BRD algorithm in
two exemplary problems: Decentralised control of an unstable
network and management of a competitive market. In both prob-
lems, we set the initial profile K0 = (Φ1

u,0, . . . ,Φ
NP
u,0)Φ−1

x,0

by projecting the zero-response Φ̂u,0 = 0 into the feasible set.2

A SLS-BRD routine is then simulated by having players update
their policies through best-responses to the parametrisation of
their rivals’ policies, assumed to be available. Due to numerical
limitations, we interrupt the updates whenever the condition
‖Φp

u,k −Φp
u,k−1‖`2/‖Φ

p
u,k‖`2 ≤ 10−8 (∀p ∈ P) is satisfied.

A. Stabilisation of a bidirectional chain network

Consider a game GLQ
∞ = {P,X , {Up}p∈P ,W , {Jp}p∈P} with

players P = {1, 2, 3} operating a chain network of Nx = 14
single-state nodes whose dynamics are described by

A =


1 0.2

−0.2
. . .

. . .

. . .
. . . 0.2
−0.2 1

 ;

Bp=
06(p−1)×2

I2

06(3−p)×2



p∈P

,

(48)
where A ∈ RNx×Nx and Bp ∈ RNx×Npu with Np

u = 2 (∀p).
This game has unstable dynamics, since ρ(A) = 1.073 > 1,
however it is stabilisable for each (A,Bp). Moreover, the game
is subjected to a noise process described by wt ∼ Uniform(W),
t ∈ N, defined over W = {wt ∈ RNx : ‖wt‖∞ ≤ 1}. In this
problem, players are interested in stabilising the game GLQ

∞ ,
while minimising their individual objective functionals,

Jp(up, u−p) = E

[ ∞∑
t=0

(
‖xt‖22 + βp‖upt ‖22

)]
,

equivalent to Eq. (21) after setting Cp = [INx 0Nx×Nu ]T,
Dpp = [0Nu×Nx

√
βpINu]T, and Dpp̃ = 0 for all p̃ ∈ P\{p}.

The players’ actions are subjected to operational constraints,
up ∈ Up(u−p), defined by the constraint sets

X = RNx ;

Up = {upt ∈ RN
p
u :

1

10

[
1Npu −1Npu

]T
upt ≤ [1 1]T};

UG =
∏
p∈P RN

p
u ,

enforcing −10 ≤ [upt ]1+[upt ]2 ≤ 10 for every t ∈ N and p ∈ P .
We assume that players design their state-feedback policies,
Kp = Φp

uΦ−1
x ∈ Cp, considering a FIR horizon of N = 50

and the constraints (Φx,n ∈ Cx,n)Nn=1 and (Φpu,n ∈ Cpu,n)Nn=1,

Cx,n = {Φx,n ∈ RNx×Nx : Φx,n = Sp(An−1)� Φx,n};
Cpu,n = {Φpu,n ∈ RN

p
u×Nx : Φpu,n = Sp(BpTAn−1)� Φpu,n}.

Under this setup, GLQ
∞ belongs to the class of dynamic potential

games (DPG, [45]) and the (unique) GFNE can be obtained in
advance by solving a centralised optimisation problem.

2That is, Φu,0 = argminΦu∈UΦ
‖Φu− Φ̂u,0‖2`2 given the feasible set

UΦ = {Φu ∈ `2[0, N) : Φp
u ∈ Up

Φ(Φ−p
u ), p ∈ P}.

In this experiment, we simulate a GFNE seeking procedure for
each different value β ∈ {(10, 40, 10), (2, 8, 2), (0.4, 1.6, 0.4)}.
The game GLQ

∞ is executed alongside the updating of players’
policies according to some learning dynamics. The players
seek ε-GFNE policies by adhering to the SLS-BRD routine
(Algorithm 4) using their (approximately)best-response maps,
{B̂R

p

Φ}p∈P , with γ = 0.95. The policies are updated simulta-
neously every ∆T = 1 stage with a learning rate of η = 1/2.

The convergence of the SLS-BRD routine to the fixed-point
K∗ = Φ∗uΦ−1

x = (Φ1∗

u , . . . ,Φ
N∗P
u )Φ−1

x is shown in Figure 3.
The results demonstrate that the players’ policies are sufficiently
close to the ε-GFNE profile after 260, 420, and 510 iterations
for each respective weighting configuration. In each case, the
(soft) FIR constraints are satisfied strictly after the initial
profile (that is, ‖Φpx,k,N‖2F < 0.95, k > 2, p ∈ P). The
Lipschitz properties of the global update rule TΦ seem to
follow the intuition provided in Section III-B: The convergence
rate improves when players apply stronger penalties to their
actions (β = (10, 40, 10)) when compared to that obtained
by weaker control penalties (β = (0.4, 1.6, 0.4)). However,
we stress that the Lipschitz constants from Theorem 8 do not
consider structural constraints (Sx and Spu, ∀p ∈ P) and cannot
be applied to this experiment. Regardless, the convergence rates
are shown to be geometric, indicating that the best-response
maps B̂RΦ in these scenarios are contractive. If not interrupted,
and disregarding numerical limitations, the SLS-BRD should
continue to approach the fixed-point K∗ at this rate.

Figure 3. NP -Chain game: Convergence of the SLS-BRD routine.

In Figure 4 (top), we show the relative distance between the
individual updates {Φp

u,k,Φ
p
u,k−1}p∈P from each player. The

updates are of similar magnitude for all players p ∈ P , in each
scenario, except for player p = 3 which shows a slightly faster
convergence. In general, these local changes become numer-
ically negligible at a faster rate than the global convergence
in Figure 3. Specifically, when the relative distance between
updates approaches the aforementioned threshold of 10−8, the
corresponding policy profile has become closer to the ε-GFNE
by a factor of 10−6. Finally, we consider the relative distances
‖Φp

x,k −Φx,k‖`2/‖Φ
p
x,k‖`2 , k ∈ N+, between the responses

{Φp
x,k}p∈P and Φx,k = FΦΦu,k obtained from the system-

level parametrisation associated with Φu,k (Theorem 4). As
shown in Figure 4 (bottom), these distances decrease at a similar
rate and are relatively small since the initial stages of the game.
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Figure 5. NP -Chain game, t ∈ (550, 600]: State x (top panels) and applied control Bu (bottom panels) trajectories for each execution of GLQ
∞ with

β ∈ {(10, 40, 10), (2, 8, 2), (0.4, 1.6, 0.4)}. The vertical axis represents each node in the chain-networked system.

The policiesKk =
(
Φ1
u,k(Φ1

x,k)−1, . . . ,ΦNP
u,k(ΦNP

x,k)−1
)

thus
approximate (Φ1

u,k, . . . ,Φ
NP
u,k)Φ−1

x,k as k → ∞ and are
expected to stabilise the system during this learning dynamics.

Figure 4. NP -Chain game: Relative distance (in log-scale) between updates
(Φp

u,k,Φ
p
u,k+1), top panels, and responses (Φp

x,k,Φx,k), bottom panels.

The evolution of the game given the actions by each player is
displayed in Figure 5 for the period t ∈ (550, 600], when the
policy updates have been interrupted. The results demonstrate
that the policies obtained by the SLS-BRD routine are capable
of jointly stabilising the networked system, robustly against
the random noise. These policies are also shown to satisfy
the operational constraints: Each player’s actions become
(roughly) symmetrical and satisfy |[ut]1 + [ut]2| ≤ 5, t ∈ N,
in all scenarios. The enforcement of this strategy highlights
the conservativeness resulting from the robust operational
constraints. Finally, note that the state- and control-trajectories
from operating the system through these policies are similar for
all β configurations; however, the policies with β = (2, 8, 2)
and β = (0.4, 1.6, 0.4) achieve a slightly better noise rejection
at the expense of more aggressive control actions. In this exper-
iment, the choice β = (10, 40, 10) seems to be preferable as it
converges faster while still achieving satisfactory performance.

B. Price competition in oligopolistic markets

Consider a game GLQ
∞ ={P,X , {Up}p∈P ,W , {Jp}p∈P} con-

sisting of a set of companies P = {1, 2, 3, 4} participating in
a single-product market. Assume that these companies have
equivalent production capacities and are able to satisfy the
demand for their products. The product offered by company
p ∈ P has a daily local demand dp = (dp(t))t∈R≥0

which
evolves according to the continuous-time dynamics

τ ḋp(t) = dpbase(t)−
∑
p̃∈P B̃

pp̃up̃(t)︸ ︷︷ ︸
linear price-demand curve

−dp(t),

where up̃ = (up̃(t))t∈R≥0
are price changes around the value

at which p̃ ∈ P sell its products and dpbase = (dpbase(t))t∈R≥0

is some fluctuating baseline demand. Specifically, the baseline
demands are of the form dpbase(t) = d̄base+vp(t), for all p ∈ P ,
given fixed d̄base = 10 and noise process vp = (vp(t))t∈R≥0

.
The market parameters τ ∈ R≥0 and B̃pp̃ ∈ R≥0 (∀p, p̃ ∈ P)
describe how local demands respond to price changes: We set
τ = 1.2 and sample Bpp̃ ∼ Uniform(0.5, 1.5) for all p, p̃ ∈ P .
In this problem, companies aim at devising pricing policies to
stabilise their demands around d̄base, which provides a stable
profit margin, while satisfying a price-cap regulation enforcing

−ūavg ≤ 1
NP

∑
p∈P u

p(t) ≤ ūavg, ūavg = 0.5.

Define x = (x1, . . . ,xNP ), with xp = (dp(t) − d̄base)t∈R≥0
,

and B̃p = [B̃p1 · · · B̃pNP ], for all p ∈ P . Considering a
zero-order hold of inputs with period ∆t = 1/4 [days], the
game GLQ

∞ can be described by the discrete-time dynamics3

xt+1 = Axt +
∑
p∈P

Bpupt + wt

with A = exp(−τ∆t)INP and {Bp = − 1
τ (A− INx)B̃p}p∈P ,

and the noise process w =
(
− 1

τ (A− INx)vt
)
t∈N [46]. The

companies assume that the baseline demand fluctuations satisfy
wt ∈ W = {wt ∈ RNx : ‖wt‖∞ ≤ 1} for all t ∈ N. Under

3With a slight abuse of notation, we use t for both the continuous-time
(x(t), t ∈ R≥0) and discrete-time (xt, t ∈ N) signals.
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this representation, each player’s objective is formulated as
solving for a policy which minimises the functional

Jp(up, u−p) = E

[ ∞∑
t=0

(
αp‖xt‖22 + βp‖upt ‖22

)]
,

given weights αp, βp ∈ R≥0. We sample αp ∼ Uniform(5, 15)
and βp ∼ Uniform(0.3, 0.6) for each p ∈ P . The operational
constraints, up ∈ Up(u−p), are defined by the constraint sets

X = RNx ;

Up = RN
p
u ;

UG =
{
ut ∈

∏
p∈P RN

p
u : 1

NP ·ūavg

[
1Nu −1Nu

]T
ut ≤ [1 1]T

}
,

We consider that players design their state-feedback policies,
Kp = Φp

uΦ−1
x ∈ Cp, with a FIR horizon of N = 16 and no

structural constraints, that is, Sx = I and Spu = I (∀p ∈ P). In
practice, this implies that companies have perfect information
of any demand xp and price up changes in the market.

As in Section IV-A, we simulate an instance of the game GLQ
∞

alongside the SLS-BRD routine (Algorithm 4) with players
using (approximately)best-response maps, {B̂R

p

Φ}p∈P , given
γ = 0.95. Policies are updated simultaneously every ∆T = 1
stage with learning rate η = 1/4. Under the above setup, the
game GLQ

∞ is not a potential game and thus a GFNE cannot be
easily computed in advance. Finally, we remark that solutions
to this problem are neither unique nor necessarily admissible:
Different initial profiles result in convergence to different fixed-
points, which might be unfair to a subset of players.

The convergence of the SLS-BRD routine to a fixed-point
K∗ = Φ∗uΦ−1

x = (Φ1∗

u , . . . ,Φ
N∗P
u )Φ−1

x is shown in Figure 6.
Since the exact fixed-point to which the routine will converge is
not known for this problem, we let Φ∗u ≈ Φu,kf for kf = 828
(when the policy updates are interrupted) and analyse the
convergence with respect to this point. In this case, the iterates
approach the fixed-point mostly at a geometric rate with the
policies requiring roughly 800 updates (or 200 days in-game)
before changes become numerically negligible. The rate of
convergence is also observed to slow around k = 15, when the
generalised constraints (UG) become active. We stress that the
best-responses {B̂R

p

Φ}p∈P cannot be (globally) contractive in
this case, as the set of fixed points ΩεGΦ

∞
is not a singleton.

Figure 6. Market game: Convergence of the SLS-BRD routine.

In Figure 7 (top), the relative distances between the individual
updates {Φp

u,k,Φ
p
u,k−1}p∈P are displayed. As in the previous

example, the updates are of similar magnitude for all players
p ∈ P and they become numerically negligible at a faster rate
than the global convergence in Figure 6. The convergence of
the distance between updates is shown to slow considerably,
especially for p ∈ {1, 4}, around k = 50. Thereafter, these
relative distances continue to decrease at a steady rate. In Figure
7 (bottom), the relative distances ‖Φp

x,k −Φx,k‖`2/‖Φ
p
x,k‖`2 ,

k ∈ N+, between responses {Φp
x,k}p∈P and Φx,k = FΦΦu,k

are shown. As before, these distances decrease at a similar rate
and are relatively small since the initial stages of the game.
The policiesKk =

(
Φ1
u,k(Φ1

x,k)−1, . . . ,ΦNP
u,k(ΦNP

x,k)−1
)

thus
approximate the stabilising profile (Φ1

u,k, . . . ,Φ
NP
u,k)Φ−1

x,k as
k →∞ and are expected to be stabilising for all iterations.

Figure 7. Market game: Relative distance between updates (Φp
u,k,Φ

p
u,k+1),

top panels, and responses (Φp
x,k,Φx,k), bottom panels, for all p ∈ P .

The evolution of the game given each player’s actions is
displayed Figure 5 for the in-game period t ∈ (260, 400] days,
after the policy updates have been interrupted. We compare
the performance of the policy profile K∗ = Φ∗uΦ−1

x with the
evolution obtained through the open-loop operation u(t) = 0.
During this period, we simulate a worst-case fluctuation on
the baseline demand for the companies’ product by defining

w(t) =



( 1, 1, 1, 1) for t ∈ [265, 279];

( 1,−1, 1,−1) for t ∈ [293, 307];

(−1, 1,−1, 1) for t ∈ [321, 335];

( 1, 1,−1,−1) for t ∈ [349, 363];

(−1,−1,−1,−1) for t ∈ [377, 391],

and w(t) = 0 otherwise. The results show that the policy
profile obtained by the SLS-BRD routine allows the companies
to efficiently respond to changes in their local demands. In
general, the players coordinate price changes to alleviate the
deviations from the baseline demand caused by the disturbances.
Moreover, the player’s actions satisfy the price-cap constraint

1
NP
|
∑
p∈P u

p(t)| ≤ 0.5 in all disturbance scenarios. The best
performance is observed for companies p ∈ {3, 4}, whereas
p = 1 behaves noticeably worse than all players (especially
for w(t) = (1,−1, 1,−1) and w(t) = (−1, 1,−1, 1), when
the open-loop operation seems to attain better results). This
highlights the fact that fixed-points obtained through the SLS-
BRD routine are not necessarily admissible GFNE, and thus
might be unfavourable for a subset of players. Finally, we note
that these policies are still not able to completely reject the
effect of the extreme disturbances: Achieving zero-offset would
require incorporating integral action into the player’s policies.



NETO et al.: A SYSTEM-LEVEL APPROACH TO SEEKING GENERALISED FEEDBACK NASH EQUILIBRIA 15

Figure 8. Market game, t ∈ (260, 400] days: State x (top panels) and applied control Bu (bottom panels) trajectories for an execution of the game GLQ
∞ . The

dashed lines refer to the state-trajectories resulting from an open-loop operation of the market with u(t) = 0 for all t ∈ R≥0

V. CONCLUDING REMARKS

This work presents the SLS-BRD, an algorithm for gener-
alised feedback Nash equilibrium seeking in NP -players non-
cooperative games. The method is based on the class of best-
response dynamics algorithms for decentralised learning and
consists of players updating and announcing a parametrisation
of their policies until converging to an equilibrium. Because
not updating control actions explicitly, this learning dynamics
can be performed alongside the execution of the game. Using
results from operator theory, we propose that convergence
to a Nash equilibrium is geometric if certain conditions are
met: Namely, that the best-response maps are contractive
operators. Our approach leverages the System Level Synthesis
framework to formulate each player’s best-response map as the
solution to robust finite-horizon optimal control problems. This
framework benefits the SLS-BRD algorithm also by allowing
richer information patterns to be enforced directly at the
synthesis level. After the main theoretical and practical aspects
are discussed, the algorithm is demonstrated on an exemplary
problems on the decentralised control of multi-agent systems.
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[19] S. Maghsudi and S. Stańczak, “Channel selection for network-assisted d2d
communication via no-regret bandit learning with calibrated forecasting,”
IEEE Transactions on Wireless Communications, vol. 14, no. 3, pp. 1309–
1322, 2015.

[20] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry, and
A. D. Dragan, “Hierarchical game-theoretic planning for autonomous
vehicles,” in 2019 International conference on robotics and automation
(ICRA), pp. 9590–9596, IEEE, 2019.



16

[21] R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager, “A
real-time game theoretic planner for autonomous two-player drone racing,”
IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1389–1403, 2020.

[22] Y. Chen and J. W. Vaughan, “A new understanding of prediction markets
via no-regret learning,” in Proceedings of the 11th ACM conference on
Electronic commerce, pp. 189–198, 2010.

[23] M. Braverman, J. Mao, J. Schneider, and M. Weinberg, “Selling to a no-
regret buyer,” in Proceedings of the 2018 ACM Conference on Economics
and Computation, pp. 523–538, 2018.

[24] D. Aussel, L. Brotcorne, S. Lepaul, and L. von Niederhäusern, “A trilevel
model for best response in energy demand-side management,” European
Journal of Operational Research, vol. 281, no. 2, pp. 299–315, 2020.

[25] J. Engwerda, W. Van Den Broek, and J. M. Schumacher, “Feedback
Nash equilibria in uncertain infinite time horizon differential games,” in
Proceedings of the 14th International Symposium of Mathematical Theory
of Networks and Systems, MTNS 2000, pp. 1–6, Unknown Publisher,
2000.

[26] D. Vrabie and F. Lewis, “Integral reinforcement learning for online
computation of feedback Nash strategies of nonzero-sum differential
games,” in 49th IEEE Conference on Decision and Control (CDC),
pp. 3066–3071, IEEE, 2010.

[27] P. V. Reddy and G. Zaccour, “Feedback Nash equilibria in linear-quadratic
difference games with constraints,” IEEE Transactions on Automatic
Control, vol. 62, no. 2, pp. 590–604, 2017.

[28] P. V. Reddy and G. Zaccour, “Open-loop and feedback Nash equilibria
in constrained linear–quadratic dynamic games played over event trees,”
Automatica, vol. 107, pp. 162–174, 2019.

[29] G. Kossioris, M. Plexousakis, A. Xepapadeas, A. de Zeeuw, and K.-G.
Mäler, “Feedback Nash equilibria for non-linear differential games in
pollution control,” Journal of Economic Dynamics and Control, vol. 32,
no. 4, pp. 1312–1331, 2008.

[30] R. Kamalapurkar, J. R. Klotz, and W. E. Dixon, “Concurrent learning-
based approximate feedback-Nash equilibrium solution of n-player
nonzero-sum differential games,” IEEE/CAA journal of Automatica Sinica,
vol. 1, no. 3, pp. 239–247, 2014.

[31] D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J. Tomlin,
“Efficient iterative linear-quadratic approximations for nonlinear multi-
player general-sum differential games,” in 2020 IEEE international
conference on robotics and automation (ICRA), pp. 1475–1481, IEEE,
2020.

[32] D. Fridovich-Keil, V. Rubies-Royo, and C. J. Tomlin, “An iterative
quadratic method for general-sum differential games with feedback
linearizable dynamics,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2216–2222, IEEE, 2020.

[33] A. Tanwani and Q. Zhu, “Feedback Nash equilibrium for randomly
switching differential–algebraic games,” IEEE Transactions on Automatic
Control, vol. 65, no. 8, pp. 3286–3301, 2019.

[34] Z. Wang, R. Spica, and M. Schwager, “Game theoretic motion planning
for multi-robot racing,” in Distributed Autonomous Robotic Systems: The
14th International Symposium, pp. 225–238, Springer, 2019.

[35] F. Laine, D. Fridovich-Keil, C.-Y. Chiu, and C. Tomlin, “The computation
of approximate generalized feedback Nash equilibria,” SIAM Journal on
Optimization, vol. 33, no. 1, pp. 294–318, 2023.

[36] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level
synthesis,” Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

[37] I. L. Glicksberg, “A further generalization of the kakutani fixed theorem,
with application to Nash equilibrium points,” Proceedings of the American
Mathematical Society, vol. 3, no. 1, pp. 170–174, 1952.

[38] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,” Appl.
comput. math, vol. 15, no. 1, pp. 3–43, 2016.

[39] E. K. Ryu and W. Yin, Large-scale convex optimization: algorithms &
analyses via monotone operators. Cambridge University Press, 2022.

[40] J. Liang, J. Fadili, and G. Peyré, “Convergence rates with inexact non-
expansive operators,” Mathematical Programming, vol. 159, pp. 403–434,
2016.
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APPENDIX

A. Proof of Corollary 4.1

Corollary. A policy Kp = Φp
uΦ−1

x (∀p ∈ P) is defined by
the kernel Φp = Φp

u ∗Φ−1
x , and implemented as

ξt = −
∑t
τ=1 Φx,τ+1ξt−τ + xt; (49a)

upt =
∑t
τ=0 Φpu,τ+1ξt−τ , (49b)

using an auxiliary internal state ξ = (ξn)n∈N with ξ0 = x0.

Proof. The statement Φp = Φp
u ∗Φ−1

x follows directly from
the inverse Z-Transform of K̂p = Φ̂p

uΦ̂−1
x and Φp = (Φpn)n∈N

being the convolution kernel of KP . The operations Eq. (49)
are obtained as the inverse Z-Transform of Eq. (25) and the fact
that Z−1[z(I − Φ̂x)ξ̂] = ξt+1 − ξt −

∑t+1
τ=2 Φx,τξt+1−τ .

B. Proof of Theorem 5

Theorem. Consider a fixed-point Φε
u ∈ B̂RΦ(Φε

u) and
assume that ‖Φ?x,N‖2F ≤ γ for Φ?

x = FΦΦ?
u obtained from

the original best-response Φ?
u ∈ BRΦ(Φε

u). Then, the profile
Φε
u = (Φ1ε

u , . . . ,Φ
NεP
u ) is an ε-GNE of GΦ

∞ satisfying

Jp(Φpε

u ,Φ
−pε
u ) ≤ min

Φp
u∈UpΦ(Φ−p

ε
u )

Jp(Φp
u,Φ

−pε
u ) + ε (50)

with ε = maxp∈P γJ
p(Φpε

u ,Φ
−pε
u ) for every player p ∈ P .

Proof. Let Φ?
u ∈ BRΦ(Φε

u). We construct a candidate fixed-
point by defining Φ̃ε

u = (Φ?u,n)N−1
n=1 . Clearly, Φ̃pε

u satisfies
all the constraints in Problem (33) by construction and also
(Φ?x,n)Nn=1 = Φ̃ε

x = FΦΦ̃ε
u satisfies ‖Φ?x,N‖2F ≤ γ by our

assumption. Now, consider Φε
u ∈ B̂RΦ(Φε

u). From optimality,

Jp(Φpε

u ,Φ
−pε
u ) ≤ Jp(Φ̃pε

u ,Φ
−pε
u ) ≤ 1

1− γ
Jp(Φ?

u,Φ
−pε
u ),

(51)
where the second inequality derives from the fact that the
quadratic objective functional is larger for the infinite-impulse
response Φ?

u and that 1
1−γ > 1. Finally, by definition,

Φp?

u = arg min
Φp

u∈UpΦ(Φ−p
ε

u )

Jp(Φp
u,Φ

−pε
u )

and thus the inequality Eq. (50) follows directly from Eq. (51)
by defining ε = maxp∈P γJ

p(Φpε

u ,Φ
−pε
u ).

C. Proof of Theorem 8

In order to prove this theorem, we start by introducing some
useful lemmas. Firstly, let W = {wt ∈ RNx : ‖wt‖∞ ≤ 1}
and assume ‖Φx,N‖2F ≤ γ is strictly satisfied, and define the
operators {Hpp̃}p,p̃∈P as in Section III-B. In the following,
we slightly abuse notation and apply matrix algebra directly to
signals and operators: These should be understood as applied
to their equivalent matrix representations.

Lemma 9. Define the signal ~Φp
u = (vec Φpu,n)N−1

n=1 for each
p ∈ P . The (approximately)best-response mappings satisfy
Φp?

u ∈ B̂R
p

Φ(Φ−pu ), where Φp?

u is obtained from a solution of

minimize
t,~Φp

u

~ΦpT

u H̃
pp~Φp

u + 2(H̃p,−p~Φ−pu + H̃p0)T~Φp
u

subject to − t̃ ≤ G̃p
u
~Φp
u ≤ t̃,

1Ttj = [gpu]j , j = 1, . . . , NUp

given the operators

H̃pp̃ = blkdiag(Hpp̃, . . . ,Hpp̃) = INx ⊗Hpp̃

G̃p
u = blkdiag(Gpu, . . . , G

p
u) = I(N−1)Nx ⊗G

p
u,

for p̃ ∈ P . Here, t is an auxiliary block-vector of appropriate
dimensions and t̃ = UTt for some unitary transformation U .

Proof. Consider Problem (33) with the aforementioned assump-
tions. Firstly, we convert the linear dynamics,

vec(Φx) = vec(S+AΦx +
∑
p S+B

pΦp
u + δINx),

⇒ ~Φx=(INx⊗S+A)~Φx+
∑
p(INx⊗S+B

p)~Φp
u+δ̃~Φx,1

⇒ ~Φx=INx ⊗ (I − S+A)−1
(∑

p S+B
p~Φp

u + δ̃~Φx,1
)

⇒ ~Φx=INx ⊗
(∑

p F
p
Φ
~Φp
u + F 0

Φ

)
,

where ~Φx,1 = vec INx . After some standard manipulations,
the objective functional becomes

Jp(·) = ~ΦpT

u (INx ⊗Hpp)~Φp
u

+ 2
(
(INx ⊗Hp,−p)~Φ−pu + (INx ⊗Hp0)

)T~Φp
u

+ (affine terms).

Consider now the vectorised constraints,∑N−1
n=0 ‖vec([Gpu]jΦ

p
u,n)‖1 ≤ [gpu]j

⇒
∑N−1
n=0 ‖(INx ⊗ [Gpu]j)~Φ

p
u,n‖1 ≤ [gpu]j ,

⇒ −tj,n ≤ (INx ⊗ [Gpu]j)~Φ
p
u,n ≤ tj,n, n = 1, . . . , N−1

where we introduced the auxiliary vector tj,n ∈ RNx then refor-
mulated the sum of 1-norms into its epigraph form by adding
the constraint 1Ttj = [gpu]j with tj = col(tj,1, . . . , tj,N−1).
Equivalently, these inequalities can be written as

−tj ≤ (I(N−1)Nx ⊗ [Gpu]j)~Φ
p
u ≤ tj , 1Ttj = [gpu]j .

Since I(N−1)Nx ⊗ Gpu = Ucol(I(N−1)Nx ⊗ [Gpu]j)
NUp
j=1 for

some unitary matrix U , we concatenate all inequalities into

−UTt ≤ (I(N−1)Nx ⊗G
p
u)~Φpu ≤ UTt,

with t = col(t1, . . . , tNUp ). Finally, we define {H̃pp̃}p̃∈P
and G̃p

u as in the lemma’s statement and reformulate the best-
response mapping accordingly.

The above result shows that {B̂R
p

Φ}p∈P are the solutions of
parametric quadratic programs with linear constraints: They
consist of piecewise affine operators. The following lemma
relates the Lipschitz constants of a collection of affine operators
with that of the operator defined by their concatenation.
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Lemma 10. Let T = (T 1, . . . , TNP ) : X → Y be a mapping
constructed from the affine operators T px = Apx+ bp, p ∈ P .
Then, LT = ‖(A1, . . . , ANP )‖2→2 is the (tightest) Lipschitz
constant for T , which can be relaxed by the upper-bound

L2
T ≤

∑
p∈P ‖Ap‖22→2 (53)

Proof. Firstly, Tx = (A1, . . . , ANP )x+(b1, · · · , bNP ), that is,
T is an affine operator with A = (A1, . . . , ANP ) ∈ L(X ,Y).
From definition, the operator norm ‖(A1, . . . , ANP )‖2→2 =
LT is smallest Lipschitz constant for this mapping. Finally,

L2
T = ‖(A1, . . . , ANP )‖22→2,

= ‖
∑
p∈P A

p∗Ap‖2→2,

≤
∑
p∈P ‖Ap

∗Ap‖2→2,

=
∑
p∈P ‖Ap‖22→2,

since (A1, . . . , ANP )∗(A1, . . . , ANP ) =
∑
p∈P A

p∗Ap.

Finally, we can proceed to prove the Theorem 7.

Theorem. Consider X = RNx and UG =
∏
p∈P RN

p
u . Then,

The map B̂RΦ is L
B̂RΦ

-Lipschitz with

L
B̂RΦ

=
√∑

p∈P(Lp
B̂RΦ

)2, (54)

given the player-specific constants

Lp
B̂RΦ

=
(
1 + κ(Hpp)

)
‖(Hpp)†Hp,−p‖2→2, (55)

with condition number κ(Hpp) = ‖(Hpp)†‖2→2‖Hpp‖2→2.

Proof. Consider the reformulation of the (approximately)best-
response maps B̂RΦ introduced in Lemma 9. Further, assume
that the active constraints are known for each Φ−pu ∈ C−pu : We
let G̃p

u,A = eAG̃
p
u denote the rows associated with the active

inequalities indexed by A, where the sign has been absorbed
into the selector matrix eA. Using the KKT conditions [47], a
solution of this problem is obtained from its Lagrangian as

~Φp?

u = −(H̃pp)†(H̃p,−p~Φ−pu + H̃p0 + 1
2G̃

pT

u λ
p?), (56)

where λp
?

is an optimal solution to the associated dual problem.
From complementary slackness, λp

?

i = 0 for all i /∈ A, and
the non-zero lagrangian multiplier are

λp
?

A = G̃p
u,A
~Φp?

u − t̃A

= −2
[
G̃p
u,A(H̃pp)†G̃pT

u,A
]†[
G̃p
u,A(H̃pp)†H̃p,−p]~Φ−pu

+ (affine terms).
(57)

Now, introduce the auxiliary operator Ṽ p = (G̃p
u,A)†(G̃p

u,A).
After some algebra, we can combine Eqs. (56)–(57) into

~Φp?

u = −
{

(H̃pp)†H̃p,−p

+ (H̃pp)†Ṽ pTH̃ppṼ p(H̃pp)†H̃p,−p
}
~Φ−pu

+ (affine terms). (58)

Thus, the optimal solution takes the form of an affine operator
~Φp?

u = (0,A−p)~Φu + bp from Cu to Cpu, with (A−p, bp)

obtained from Eq. (58). The collective best-response is the
concatenation of these solutions,

~Φ?
u =

(
(0,A−1), . . . , (0,A−NP )

)
~Φu + (b1, . . . , b2).

Finally, note that converting this formula in terms of the original
matrix-valued signal requires only a unitary transformation that
preserves its Lipschitz properties. Thus, using Lemma 10,

L2
B̂RΦ

=
∑
p∈P ‖(0,A−p)‖22→2.

Now, consider that

‖(0,A−p)‖2→2

≤
(
1 + κ(H̃pp)‖Ṽ p‖22→2

)
‖(H̃pp)†H̃p,−p‖2→2

=
(
1 + κ(H̃pp)

)
‖(H̃pp)†H̃p,−p‖2→2

=
(
1 + κ(Hpp)

)
‖(Hpp)†Hp,−p‖2→2

= Lp
B̂RΦ

where for the first inequality we applied to Eq. (58) the triangle
inequality and submultiplicative properties of operators norms,
on the first equality we used the fact that ‖Ṽ p‖ = 1, and for
the last equality we used the fact that ‖Im ⊗Z‖ = ‖Z‖ for
any operator norm, m > 0, and operator Z. Finally, since

L2
B̂RΦ

≤
∑
p∈P(Lp

B̂RΦ
)2,

we can relax this Lipschitz constant for B̂RΦ by considering
this expression to hold as an equality.
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