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ABSTRACT
In this work, the stability, controllability and observability properties of a class of activated sludge
plants are analysed. Specifically, the five biological reactors and the secondary settler in the Benchmark
Simulation Model no. 1 (BSM1) are studied. For the task, we represented the plant as a dynamical
system consisting of 145 state variables, 13 controls, 14 disturbances and 15 outputs and as a complex
networks to study its full-state controllability and observability properties from a structural and a
classical point of view. By analysing the topology of the network, we show how this class of systems is
controllable but not observable in a structural sense, and thus how it is controllable but not observable
in a classical sense for almost all possible realisations. We also show how a linearisation commonly
used in the literature is neither full-state controllable nor full-state observable in the classical sense. The
control and observation efforts are quantified in terms of energy- and centrality-based based metrics.

1. Introduction

Stricter effluent requirements, costs minimisation, sustain-
able water and energy cycles, recovery of nutrients and other
resources, as well as increasing expectations in the public to
attain high service standards require wastewater treatment to
face unprecedented operational challenges. Because of their
wide diffusion, activated sludge processes play a central role
in the biological treatment of wastewater and their efficient
management has a large technological and societal impact.
Many control strategies for activated sludge plants have been
proposed in the industrial and academic literature. More than
forty years ago the first specialised conference on Instrumen-
tation, Control and Automation of Water and Wastewater
systems was founded with the firm goal of encouraging the
application of automation technologies to wastewater treat-
ment plants. Pioneering works, as Olsson et al. (1973) and
Olsson and Andrews (1978), inspired numerous researchers
and practitioners to approach this specific field. Extensive
reviews of the various control solutions can be found in Ols-
son et al. (2005, 2013). Importantly, many research efforts
have been fostered thanks to a number of support tools that
provide a simulation protocol for real-world activated sludge
processes. The Benchmark Simulation Model no. 1 (BSM1,
Gernaey et al. (2014)), specifically, singled out as the refer-
ence platform for developing and controlling activated sludge
processes subjected to typical municipal wastewater influents.
The availability of the BSMs has led to the design of many
modelling and control solutions (Alex et al., 2002; Rosen
et al., 2002; Stare et al., 2007; Holenda et al., 2008; Os-
tace et al., 2011; Åmand et al., 2013; Han et al., 2014; Fran-
cisco et al., 2015; Zeng and Liu, 2015; Zhang and Liu, 2019;
Moliner-Heredia et al., 2019), which, regretfully, have not yet
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been digested in a comprehensive review. These works, while
remarkable in addressing specific control objectives, high-
light the necessity to further understand BSM-like systems
from a control theoretical perspective. System properties like
stability, controllability and observability of BSMs have been
touched only marginally or studied only for simpler subsys-
tems. In Benazzi and Katebi (2005), the nonlinear global
observability of a single bio-reactor from the plant is analysed.
Busch et al. (2013) discusses optimal measurement configura-
tions that ensure local observability for a BSM1 in which the
settler’s model is simplified. In Zeng et al. (2016), the same
simplified model is decomposed into subsystems which are
then each tested for observability, individually. Works like
Yin and Liu (2018), Yin et al. (2018) and Yin and Liu (2019)
systematically exploit the notion of observability to either
design state estimators, subsystem decompositions, or to test
this property for the BSM1 model, though under a rather
unrealistically large set of measurements. To the best of our
knowledge, no similar studies report on the stability and con-
trollability properties. Under this scenario, this work aims at
contributing to the understanding of a large class of activated
sludge plants by analysing the stability, controllability and
observability properties of this important benchmark.
For the analysis, the dynamical system associated with the
BSM1 is mapped onto a complex network where its full-state
controllability and observability properties are studied. As
we have been interested in determining whether the system is
controllable and observable under all feasible linearisations
(Neto et al., 2020a,b), we couple classical control notions
from linear system theory (Callier and Desoer, 1991) with
graph-theoretic tools (Lin, 1974; Mayeda and Yamada, 1979;
Reinschke, 1988; Liu et al., 2011; Jarczyk et al., 2011; Liu
et al., 2013; Jia et al., 2021). This allows us to determine
such properties from the structure of the graph, regardless
of the linearisation. The classical analysis is performed on a
linearisation of the BSM1 often encountered in the literature.
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Figure 1: The activated sludge plant: Process layout.

Our analyses show that activated sludge plants described us-
ing the BSM1 are structurally controllable, but that they are
not structurally observable. Because of the generality of this
result, we implicitly show also how the BSM1 is full-state
controllable but not full-state observable in a classical sense,
for almost all possible linearisations of the model. In addi-
tion, the conditions to satisfy the more restrictive notions of
strong structural controllability and observability are not sat-
isfied. The classical counterpart of this result is verified with
Popov-Belevitch-Hautus tests (Hautus, 1970). An important
result of our analysis is that a common linearisation of the
BSM1 is not full-state controllable and not full-state observ-
able. Being controllability and observability notions of the
binary type, we complement the analysis by determining also
the energy- and centrality-based metrics (Müller and Weber,
1972; Pasqualetti et al., 2014; Summers et al., 2016) which
quantify the control and observation efforts that are needed
to operate this class of wastewater treatment plants.
The analysis is presented as follows: Section 2 describes the
activated sludge plant and its state-space model, Section 3
sets the preliminaries and the notation by overviewing the
concepts of stability and the classical and structural notions
of controllability and observability. Section 4 discusses our
results on the stability, full-state controllability and observ-
ability for this class of activated sludge plants. In Section 5
we discuss the results for two alternative configurations of the
plant. Model equations, model parameters, and the operating
point used for linearisation are reported in Appendix A.

2. The activated sludge plant: Process
overview and state-space model

We consider the activated sludge process in a conven-
tional biological wastewater treatment plant. Based on the
denitrification-nitrification process, bacteria reduce nitrogen
present in the influent wastewater in the form of ammonia
into nitrate, which is subsequently reduced into nitrogen gas
to be released into the atmosphere. The prototypical process,
in Fig. 1, consists of five biological reactors and a settler.
The treatment starts with a first reactor where wastewater
from primary sedimentation, return sludge from secondary
sedimentation and internal recycle sludge are fed. The out-

flow from the first reactor is then fed sequentially to the down-
stream reactors and, eventually, from the fifth reactor to the
secondary settler. Mixed liquor from the fifth reactor is recir-
culated into the first reactor together with the recycle sludge
from secondary sedimentation, as mentioned. Excess sludge
from the settler can also be directed towards other processes.
Oxygen can be added by insufflating air into each reactor. In
the aerated reactors, the ammonium nitrogen (NH4-N) in the
wastewater is oxidised into nitrate nitrogen (NO3-N), whichis in turn reduced into nitrogen gas (N2) in the anoxic reac-tors. An additional carbon source can be added to each rector
independently. No other chemicals are added to the process.
Each reactor is described by the Activated Sludge Model no.
1 (Henze et al., 2000). For the settler, a 10-layers non-reactive
model by Takács et al. (1991) is used. Under this setup, the
process corresponds to the Benchmark Simulation Model no.
1 (Gernaey et al., 2014), or activated sludge plant (ASP).
The dynamics of each reactor A(r) (r = 1,… , 5) are de-
scribed by 13 state variables, the vector of concentrations

xA(r) = (SA(r)I , SA(r)S , XA(r)
I , XA(r)

S , XA(r)
BH , X

A(r)
BA , X

A(r)
P ,

SA(r)O , SA(r)NO , S
A(r)
NH , S

A(r)
ND , X

A(r)
ND , S

A(r)
ALK )

T, (1)
and controllable inputs uA(r) = (KLa(r), Q

(r)
EC ), the oxygentransfer coefficient KLa(r) and external carbon source flow-

rate Q(r)EC . The dynamics of each layer S(l) (l = 1,… , 10)
of the settler are described by 8 state variables, the vector

xS(l) = (XS(l)
SS , S

S(l)
I , SS(l)S , SS(l)O ,

SS(l)NO , S
S(l)
NH , S

S(l)
ND , S

S(l)
ALK )

T. (2)

The plant is subjected to three additional controllable inputs,
the internal and external sludge recycle flow-rates (QA and
QR, respectively) and the wastage flow-rate QW , and to 14
disturbances, the influent flow-rate QIN and its concentra-
tions xA(IN), all entering the first reactor. Wastewater con-
centrations in the internal recycle are given by xA(5), whereas
xS(1) are concentrations in the external recycle and wastage.
As for the measurements, we consider a sensor-arrangement
consisting of analysers determining the concentrations
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Table 1
Activated sludge plant: Process variables by location (‘A(r)’, r = 1,… , 5, in the r-th bio-reactor, or ‘IN ’ in the influent wastewater;
‘S(l)’, l = 1,… , 10, in the l-th settler layer) and type (‘D’, disturbance; ‘S’, state variable; ‘M ’ measurement; and ‘C’, control).

Variable Description Type Units

SIN
I , SA(r)

I , SS(l)
I Soluble inert organic matter D, S, S g COD m−3

SIN
S , SA(r)

S , SS(l)
S Readily biodegradable substrate D, S, S g COD m−3

XIN
I , XA(r)

I Particulate inert organic matter D, S g COD m−3

XIN
S , XA(r)

S Slowly biodegradable substrate D, S g COD m−3

XIN
BH , X

A(r)
BH Active heterotrophic biomass D, S g COD m−3

XIN
BA , X

A(r)
BA Active autotrophic biomass D, S g COD m−3

XIN
P , XA(r)

P Particulate products from biomass decay D, S g COD m−3

SIN
O , SA(r)

O , SS(l)
O Dissolved oxygen D, S/M, S g O2 m−3

SIN
NO, S

A(r)
NO , S

S(l)
NO Nitrate and nitrite nitrogen D, S/M, S g N m−3

SIN
NH , S

A(r)
NH , S

S(l)
NH NH+

4+ NH3 nitrogen D, S, S/M(l = 10) g N m−3

SIN
ND, S

A(r)
ND , S

S(l)
ND Soluble biodegradable organic nitrogen D, S, S g N m−3

XIN
ND, X

A(r)
ND Particulate biodegradable organic nitrogen D, S g N m−3

SIN
ALK , S

A(r)
ALK , S

S(l)
ALK Alkalinity D, S mol HCO−

3 m−3

XS(l)
SS Total suspended solids S/M(l = 10) g COD m−3

QIN Influent flow-rate D m3 d−1

QA Internal recirculation flow-rate C m3 d−1

QR External recirculation flow-rate C m3 d−1

QW Wastage flow-rate C m3 d−1

Q(r)
EC External carbon source flow-rate C m3 d−1

KLa(r) Oxygen transfer coefficient C d−1

BODS(10)
5 Biochemical oxygen demand M g COD m−3

CODS(10) Chemical oxygen demand M g COD m−3

NS(10)
TOT Total nitrogen M g N m−3

y = (yA(1),… , yA(5), XS(10)
SS , SS(10)NH ,

BODS(10)
5 , CODS(10), NS(10)

TOT )
T. (3)

with yA(r) = (

SA(r)O , SA(r)NO
) the measurements taken at the

r-th bio-reactor. The effluent concentrations of biochemical
oxygen demand (BOD5), chemical oxygen demand (COD)
and total nitrogen (NTOT ) are defined from state variables,
BODS(10)

5 = ((1 − fP )(X
S(10)
BH +XS(10)

BA ) + SS(10)S (4a)
+XS(10)

S )∕4;

CODS(10) = SS(10)S + SS(10)I +XS(10)
S +XS(10)

I (4b)
+XS(10)

BH +XS(10)
BA +XS(10)

P ;

NS(10)
TOT = SS(10)NO + SS(10)NH + SS(10)ND +XS(10)

ND (4c)
+ iXB(X

S(10)
BH +XS(10)

BA )

+ iXP (X
S(10)
P +XS(10)

I ),

with stoichiometric parameters (fP , iXB , and iXP ) as per
Gernaey et al. (2014). The effluent concentrations XS(10)

a =
(XS(10)

SS ∕Xf )X
A(5)
a , for a ∈ {I, S, BH,BA, P ,ND}, de-

pend onXf = 0.75(X
A(5)
I +XA(5)

S +XA(5)
BH +XA(5)

BA +XA(5)
P ).

The state-space model for this class of ASPs is given as
ẋ(t) = f (x(t), u(t), w(t)|�x); (5a)
y(t) = g(x(t)|�y), (5b)

with state variables x(t) = ((xA(1),… , xA(5)), (xS(1),… ,
xS(10)))T ∈ ℝNx

≥0 , measurement variables y(t) ∈ ℝNy
≥0 , con-

trollable inputs u(t) = (QA, QR, QW , uA(1),… , uA(5))T ∈
ℝNu
≥0 , and disturbances w(t) = (QIN , xA(IN))T ∈ ℝNw

≥0 , allat time t. The time-invariant dynamics f (⋅|�x) and g(⋅|�y)depend on a set of stoichiometric and kinetic parameters col-
lectively denoted by the vectors �x and �y. The state-spacemodel in Eq. (5) thus consists ofNx = 13×5+8×10 = 145state variables,Nu = 3+2×5 = 13 controls,Nw = 1+13 =
14 disturbances and Ny = 5 × 2 + 5 = 15 outputs. As
Nx ≫ Nu andNx ≫ Ny, the system is both under-actuated
and under-observed. We refer to Table 1 for a characteri-
sation of the variables. The complete model equations and
parameters (�x, �y) in Eq. (5) are reported in Appendix A.
The default control strategy proposed in Gernaey et al. (2014)
for the BSM1 considers two low-level (PI) controllers:

• Nitrate and nitrite nitrogen in the second reactor, SA(2)NO ,
is controlled by manipulating the internal recycle, QA;

• Dissolved oxygen concentration in the fifth reactor,
SA(5)O , is controlled by manipulating the oxygen mass
transfer coefficient KLa(5), a proxy to the air flow-rate.

The plant’s performance is based on flow-weighted and time-
averaged effluent concentrations of total suspended solids
(XSS ), biochemical oxygen demand (BOD5), chemical oxy-
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gen demand (COD), total nitrogen (NTOT ) and ammonia
(SNH ). Typically, the control performance is given in terms
of effluent quality by measuring and minimising the effluent
concentration of these compounds (Gernaey et al., 2014).
Importantly, our state-space configuration includes all control
handles suggested in Gernaey et al. (2014) that do not require
changes to the plant layout depicted in Fig. 1. We consider
the possibility of having the default low-level controllers ap-
plied on each of the five reactors. As such, our configuration
necessarily includes a sensor-arrangement that considers the
measurement of SA(r)NO and SA(r)O in all reactors (r = 1,… , 5).

3. Preliminaries: Dynamical properties

We consider the general state-space representation of a deter-
ministic non-autonomous controlled dynamic system

ẋ(t) = ft
(

x(t), u(t), w(t)|�x
) (6a)

y(t) = gt
(

x(t), u(t), w(t)|�y
) (6b)

The state equation (6a), determines the evolution of the state
x(t) ∈ ℝNx , given its current value and a set of controllable
and uncontrollable but measurable inputs u(t) ∈ ℝNu and
w(t) ∈ ℝNw . The measurement equation (6b) determines
how the state is emitted as measurement y(t) ∈ ℝNy . The
nonlinear and time-varying functions ft(⋅|�x) and gt(⋅|�y)are fixed by the parameter vectors �x and �y. We consider
autonomous functions f (⋅) and g(⋅), static state-feedback
policies u(t) = ℎ(x(t)|�u) with a fixed parameters �u, andno input feedthrough, y(t) = g(x(t)|�y). This allows to set
t0 = 0, though we often and intentionally omit mentioning it.
The structural form of the state-space representation of the
system can be written using the usual linear model

ẋ(t) = Ax(t) + Bu(t) + Gw(t) (7a)
y(t) = Cx(t) (7b)

The structure of matricesA, B, G and C can be defined using
inference diagrams in such a way that element An′x,nx (respec-tively, Bnx,nu , Gnx,nw and Cny,nx ) is non-zero, and potentially
unknown, whenever component xnx (unu ,wnw and again xnx )appears in the vector field fn′x (⋅) and algebraic function gny (⋅);that is, whenever the (n′x, nx)-th element )fn′x∕)xnx (respec-tively, )fn′x∕)unu , )fn′x∕)wnw and )gny∕)xnx) in the Jaco-
bian matrix(es) is non-zero. When the elements of A, B, G
andC are either zeros or unknown, the resulting family of sys-
tems is referred to as structured dynamical system (Reinschke,
1988). Evaluating the Jacobians at a specific point (x′, u′, w′)
leads to an approximated linear time-invariant (LTI) system
in which functions A, B, G and C are known. A steady-state
point is usually chosen for fixing the linearisation.
Certain properties of structured and LTI systems can be stud-
ied by mapping the state equation Eq. (7a) onto the digraph

c = (c , c), (8)

where the vertex set c = A ∪ B is the union of vertex
set A = {x1,… , xNx

} of state components and vertex set
B = {u1,… , uNu

} of controls, while the edge set c =
A ∪B is the union of set A =

{

(xnx , xn′x ) | An′x,nx ≠ 0
} of

directed edges between state component vertices and set B =
{

(unu , xnx ) | Bnx,nu ≠ 0
} of directed edges between state and

control vertices. The measurement process is studied by
mapping the state and output equations Eq. (7) onto digraph

o = (o, o), (9)
Vertex set o = A∪C is the union of vertex set A and ver-
tex set C = {y1,… , yNy

} of outputs. Edge set o = A∪C
is the union of set A and set C =

{

(xnx , yny ) | Cny,nx ≠ 0
}

of directed edges between state and output vertices.
By coupling controls to state variables and state variables
to measurements, the notions of controllability and observ-
ability define the prerequisite for control and state estimation.
These conditions can be relaxed in the absence of unstable
modes, in favour of the weaker notions of stabilisability and
detectability. For linear systems, classical sufficient and nec-
essary controllability and observability tests have been de-
rived (Kalman, 1960, 1963; Hautus, 1970; Callier and Desoer,
1991). When a system is known only structurally, stronger
notions of structural controllability and observability (Lin,
1974; Mayeda and Yamada, 1979) and associated sufficient
and necessary conditions (Liu et al., 2011, 2013; Jarczyk
et al., 2011; Jia et al., 2021) can be used. For LTI systems,
the classical notions lead to important tools like the Kalman’s
canonical decomposition. For the sake of completeness and
notational necessity, this section reviews all these concepts.

3.1. Stability

We review stability in terms of the conditions under which
the system in Eq. (7) subjected to a bounded input produces
bounded state- and output-response trajectories (Callier and
Desoer, 1991). These notions are referred to as external and
internal stability, the latter being more general. For simplicity
and without any loss, we do not distinguish between controls
and disturbances and momentarily redefine B ≡ [B|G].
A linear system with impulse response matrix H(⋅, ⋅) ∶
ℝ≥0 × ℝ≥0 → ℝNy×Nx ; (t, �) ↦ H(t, �) is stable if y(t) =
∫ tt0 H(t, �)u(�)d� is bounded when u(t) is bounded. This no-
tion of external stability is defined as the existence of a finite
gain � < ∞ such that for all bounded inputs u the following
relation holds ‖y(t)‖∞ ≤ �‖u(t)‖∞. External stability can be
verified at the system level by showing that, under some mild
conditions on the smoothness of u andH , the upper bound
� for the induced matrix norm of the input-output map exists
and can be used as gain in aforementioned relation; that is,

supt∈ℝ≥0

{

∫

t

t0
‖H(t, �)‖∞d�

}

= � <∞. (10)

For a LTI system,H(t, �) = H(t − �) = CeA(t−�)B. Condi-
tion Eq. (10) specialises and it suffices to show that i) the
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impulse response is absolutely integrable and ii) the transfer
functionH(s) = [H(t)] = C(sI − A)−1B is Hurwitz:

i) ∫

∞

t0
‖H(t)‖dt <∞; (11a)

ii) {�[H(s)] ∈ ℂ ∶ Re(�) < 0} . (11b)
More generally, system (A,B, C) with state transition ma-
trix Φ(⋅, ⋅) ∶ ℝ≥0 × ℝ≥0 → ℝNx×Nx ; (t, �) ↦ Φ(t, �) is
stable if both x(t) = Φ(t, t0)x(t0) + ∫ tto Φ(t, �)Bu(�)d� and
y(t) = CΦ(t, t0)x(t0)+C ∫ tto Φ(t, �)Bu(�)d� are bounded forevery bounded u(t). This notion of joint internal and external
stability is verified by showing that matrix A is Hurwitz:

{�[A] ∈ ℂ ∶ Re(�) < 0} . (12)
For the LTI system in Eq. (7) where Φ(t, �) = eA(t−�),
the entries of the state transition matrix are linear combi-
nations of the system modes. By letting �[A] = {�nx}

Nx
nx=1denote the eigenvalues of A, with {�1,… , �N} ⊆ ℝ and

{(�N+1, �∗N+1),… , (�N+S , �∗N+S )} ⊆ ℂ being the eigenval-
ues with respective algebraic multiplicities �(�nx ), and given
�(i,j)n,k , �

(i,j)
n,k , �

(i,j)
n,k ∈ ℝ, each (i, j)-th entry in eAt is of the form

[eAt]i,j =
N
∑

n=1

�(�n)−1
∑

k=0
(�(i,j)n,k t

k)e�nt (13)

+
N+S
∑

n=N+1

�(�n)−1
∑

k=0
(�(i,j)n,k t

k cos
(

Im(�n)t + �
(i,j)
n,k

)

)eRe(�n)t.

The condition Eq. (12) implies that limt→∞ [Φ(t, �)]i,j = 0,for all (i, j). Therefore, it is possible to verify exponential
stability at the system level since that, for any fixed � ∈ [0, t),
the state transition matrix satisfies limt→∞ ‖Φ(t, �)‖ = 0.

3.2. Controllability and observability

A system is full-state controllable if it is possible to steer it
from any initial state to any final state in finite time, whereas
it is full-state observable if it is possible to uniquely deter-
mine its initial state from a sequence of measurements over
a finite time. These notions are overviewed and classical
necessary and sufficient conditions are given for LTI systems.
For systems that are controllable and observable, we review a
set of energy-based controllability and observability metrics.
We also review the more general structural notions of these
notions and provide weak and strong validity conditions.

3.2.1. Classical controllability and observability

Let the controllability Gramian of the pair (A,B) be theNx×
Nx symmetric positive semidefinite matrix

Wc(t) = ∫

t

0
eA�BBTeA

T�d�. (14)
A sufficient and necessary controllability condition is

det
(

Wc(t)
)

≠ 0, ∀t > 0. (15)

Let the observability Gramian of the pair (A,C) be theNx ×
Nx symmetric positive semidefinite matrix

Wo(t) = ∫

t

0
eA

T�CTCeA�d�. (16)

A sufficient and necessary observability condition is
det

(

Wo(t)
)

≠ 0, ∀t > 0. (17)
Gramian-based criteria in Eqs. (15) and (17) are straightfor-
ward but unpractical. Equivalent criteria can be defined from
controllability and observability matrices (Kalman, 1960).
Let  =

[

B AB A2B ⋯ ANx−1B
] be the Nx ×

(Nx × Nu) controllability matrix of the system. Let  =
[

CT ATCT (AT)2CT ⋯ (AT)Nx−1CT
]T be the (Ny ×

Nx) ×Nx observability matrix of the system. Sufficient and
necessary condition for controllability and observability are

rank() = Nx; (18a)
rank() = Nx. (18b)

The criteria in Eqs. (18a) and Eq. (18b) are more direct and,
for low-dimensional systems, their evaluation only requires
a small number of matrix multiplications. The computation
of  and  can still be troublesome for high-dimensional
systems. The limitation is due to numerical over- and under-
flows resulting from computing large powers of A and AT.
A scalable alternative that overcomes the limitations of both
Gramian-based and Kalman’s rank criteria is provided by the
Popov-Belevitch-Hautus (PBH) rank tests. Necessary and
sufficient conditions are given by the two following lemmas:
Lemma 1. (Hautus, 1970). The statement ‘the pair (A,B)
is controllable’ is equivalent to the statements:

rank(
[

�I − A B
]

) = Nx, ∀� ∈ ℂ; (19a)
rank(

[

�iI − A B
]

) = Nx, ∀�i ∈ �(A) ⊂ ℂ. (19b)
Lemma 2. (Hautus, 1970). The statement ‘the pair (A,C)
is observable’ is equivalent to the statements:

rank(
[

�I − AT CT
]T) = Nx, ∀� ∈ ℂ; (20a)

rank(
[

�iI − AT CT
]T) = Nx, ∀�i ∈ �(A) ⊂ ℂ. (20b)

Based on Lemma 1, the pair (A,B) is controllable if and only
if, for each eigenvalue �i ∈ �(A) (that is, when rank(�iI −
A) < Nx), the columns of B have at least one component
in the direction �i ∈ ℝNx , being �i the eigenvector of A
associated to �i; The eigenvectors �i for which rank([�iI −
AB]) < Nx are state-space directions that are uncontrollablewith the controls determined by B. Based on Lemma 2, the
pair (A,C) is observable if and only if, for each �i ∈ �(A)
(that is, when rank(�iI − AT) < Nx), the columns of C have
at least one component in the direction �i ∈ ℝNx , being �ithe eigenvector of A associated to �i; The eigenvectors �ifor which rank([�iI −AT CT]T) < Nx are directions that areunobservable with the measurements determined by C .
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Controllability and observability are invariant with respect to
nonsingular similarity transformations P ∈ ℝNx×Nx . Thus,

• the pair (A,B) is controllable if and only if the pair
(A′, B′) = (P−1AP , P−1B) is controllable;

• the pair (A,C) is observable if and only if the pair
(A′, C ′) = (P−1AP ,CP ) is observable.

Controllability and observability metrics

Full-state controllability and observability are binary proper-
ties. Starting from the seminal work by Müller and Weber
(1972), various scalar metrics have been proposed to quantify
the difficulty of control and observation tasks. We overview
some energy-related metrics recently proposed by Pasqualetti
et al. (2014), and Summers et al. (2016) for LTI systems.
Define the quadratic control and measurement energies

Ec(u(t), t|R) = ∫

t

0
u(�)TRu(�)d� = ‖u(t)‖22|R; (21a)

Eo(y(t), t|Q) = ∫

t

0
y(�)TQy(�)d� = ‖y(t)‖22|Q. (21b)

In optimal quadratic regulation, we search for a controller that
minimises these energies given positive definite weighting
matrices R ∈ ℝNx×Nx and Q ∈ ℝNy×Ny . When minimised
with R = Iu and Q = Iy, the unweighted energies determine

• ũ(t) = BTeAT(t)W −1
c (t)(x(t) − eAtx(0)), the control

from x(0) to x(t) of minimum L2-effort
E∗c (t|ũ(t)) = (x(t)−e

Atx(0))TW −1
c (t)

(

x(t)−eAtx(0)
)

;

• x(0) = W −1
o (t) ∫ t0 e

AT�CTy(�)d�, the initial state from
measurement ỹ(t) of minimum L2-effort

E∗o (t|ỹ(t)) = x(0)
TWo(t)x(0).

Finite- and infinite-horizon controllability and observabil-
ity metrics can be derived from Eq. (15) and (17). The
eigenvectors {�nx (�cnx )

}Nx
nx=1

associated with the eigenvalues
�cnx ∈ �

(

Wc(t)
) correspond to state-space directions that

require increasingly larger control energy the smaller �cnx ,
whereas the eigenvectors {�nx (�onx )

}Nx
nx=1

associated with the
eigenvalues �onx ∈ �

(

Wo(t)
) correspond to directions of in-

creasingly larger output energy the larger �onx . The controland measurement efforts associated with pairs (A,B) and
(A,C) can thus be quantified by single scalars defined from
spectra �(Wc(t)

)

=
{

�cnx
}Nx
nx=1

and �(Wo(t)
)

=
{

�onx
}Nx
nx=1

.
Infinite-time Gramians,Wc(∞) andWo(∞), always exist forHurwitz systems, Eq. (12), and can be efficiently computed
by solving Lyapunov equations (Benner et al., 2008). Thus,
we only review a number of infinite-time metrics: Finite-time
counterparts are evaluated by integrating Eqs. (15) and (17).

Definition 1. (Energy-related controllability metrics) Let
Wc(∞) be the solution of AWc(∞) +Wc(∞)AT +BBT = 0.
The control effort for (A,B) is quantified by the scalars:

I. trace
(

Wc(∞)
): It is inversely related to the control

effort averaged over all state-space directions;
II. trace

(

W †
c (∞)

)

: It is related to the control effort aver-
aged over all directions in the state-space;

III. log (det(Wc(∞))
): It is related to the volume of aNx-dimensional hyper-ellipsoid whose points are reachable

with one unit or less of control energy;
IV. �cmin

(

Wc(∞)
): It is inversely related to the control en-

ergy along the least controllable eigen-direction.
Definition 2. (Energy-related observability metrics) Let
Wo(∞) be the solution ofWo(∞)AT +AWo(∞) +CTC = 0.
The output effort for (A,C) is quantified by the scalars:

I. trace
(

Wo(∞)
): It is inversely related to the output ef-

fort averaged over all state-space directions;
II. trace

(

W †
o (∞)

)

: It is related to the output effort aver-
aged over all directions in the state-space;

III. log (det(Wo(∞))
): It is related to the volume of aNx-dimensional hyper-ellipsoid whose points are observ-

able with one unit or less of output energy;
IV. �omin

(

Wo(∞)
): It is inversely related to the output en-

ergy along the least observable eigen-direction.

The control effort associated with attempting to control the
full-state by only controlling one individual state variable xnxat a time is quantified by the average controllability centrality

Cc(nx) = trace
(

Wc,nx (∞)
)

. (22)
This non-negative quantity is computed when a single control
acts only on the nx-th state variable, when B = enx is a unitvector in the standard basis of ℝNx . Infinite-horizon Grami-
ans Wc,nx (∞) ∈ ℝNx×Nx solve the Lyapunov equations
AWc,nx (∞) +Wc,nx (∞)A

T = −enxe
T
nx

for nx ∈ {1,… , Nx}.
The measurement effort associated with attempting to recon-
struct the full-state by only measuring one state variable xnxat a time is quantified by the average observability centrality

Co(nx) = trace
(

Wo,nx (∞)
)

. (23)
This non-negative quantity is computed when a single sensor
measures directly only the nx-th state variable, when C =
eTnx is a unit vector in ℝNx . The infinite-horizon Gramians
Wo,nx (∞) ∈ ℝNx×Nx are computed for all nx ∈ {1,… , Nx}
as solutions toWo,nx (∞)A

T + AWo,nx (∞) = −enxe
T
nx
.

Stabilisability and detectability

A system is stabilisable if it possible to steer it from any initial
state to the zero-state (a steady-state, for linearised systems),
whereas it is detectable if its initial state can be asymptotically
approximated from a sequence of measurements. Formally,
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Definition 3. (Stabilisability). The pair (A,B) is said to be
stabilisable if, given any initial state x(0), it is possible to
design an input u(t) such that x(t)→ 0 as t → ∞.
Definition 4. (Detectability). The pair (A,C) is said to be
detectable if, giving any initial state x(0), it is possible to
compute a state estimate x̂(t) from the force-free evolution
of y(t), so that (x(t) − x̂(t)) → 0 as t → ∞.

These properties are often viewed as weaker notions of con-
trollability and observability. Sufficient and necessary condi-
tions for stabilisability and detectability can be derived from
Kalman’s canonical decomposition.
Lemma 3. (Minimal Realisation, Kalman (1963)). Let 
and  be, respectively, the controllability and observabil-
ity matrix of a full-order model (A,B, C), with rank() =
N , rank() = N and rank([ T]) = N. Now, let
x̃ = [xco xc̄o xcō xc̄ō]T = P−1x be a linear transformation
converting (A,B, C) into Kalman’s canonical form

⎡

⎢

⎢

⎢

⎣

ẋco(t)
ẋcō(t)
ẋc̄o(t)
ẋc̄ō(t)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

Aco 0 A13 0
A21 Acō A23 A24
0 0 Ac̄o 0
0 0 A43 Ac̄ō

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

xco(t)
xcō(t)
xc̄o(t)
xc̄ō(t)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

Bco
Bcō
0
0

⎤

⎥

⎥

⎥

⎦

u(t)

y(t) =
[

Cco 0 Cc̄o 0
]

x̃(t).

The minimal realisation (Aco, Bco, Cco) is a controllable and
observable reduced model of orderNxco = N +N−N.

Let  = [B AB A2B ⋯ ANx−1B] ∈ ℝNx×NxNu be the con-
trollability matrix of (A,B), with rank() = Nxc ≤ Nx.
There exists a nonsingular matrix Pc ∈ ℝNx×Nx , whose first
Nxc columns are the linearly independent columns of , such
that the transformation [xc xc̄]T = P−1c x has a state equation

[

ẋc(t)
ẋc̄(t)

]

=
[

Ac A12
0 Ac̄

] [

xc(t)
xc̄(t)

]

+
[

Bc
0

]

u(t),

with xc(t) ∈ ℝNxc and xc̄(t) ∈ ℝ(Nx−Nxc ). Pairs (Ac , Bc)and (Ac̄ , 0) are respectively the controllable and uncontrol-
lable subsystems in Kalman’s decomposition (Lemma 3). A
sufficient and necessary condition for stabilisability is that
Re(�j) < 0 for all �j ∈ �(Ac̄) ⊂ �(A). Similarly, let  =
[CT ATCT (AT)2CT ⋯ (AT)Nx−1CT]T ∈ ℝNyNx×Nx be the
observability matrix of (A,C), with rank() = Nxo ≤ Nx.
There exists a nonsingular matrix Po ∈ ℝNx×Nx , whose first
Nxo rows are the linearly independent rows of , such thattransformation [xo xō]T = P−1o x yields the model

[

ẋo(t)
ẋō(t)

]

=
[

Ao 0
A21 Aō

] [

xo(t)
xō(t)

]

+
[

Bo
Bō

]

u(t)

y(t) =
[

Co 0
]

[

xo(t)
xō(t)

]

,

with xo(t) ∈ ℝNxo and xō(t) ∈ ℝ(Nx−Nxo ). Pairs (Ao, Co) and
(Aō, 0) are respectively the observable and unobservable sub-systems in Kalman’s decomposition (Lemma 3). A sufficient

and necessary condition for detectability is that Re(�j) < 0for all eigenvalues �j ∈ �(Aō) ⊂ �(A).
Though straightforward, these criteria are unpractical for
high-dimensional systems as the design of Pc and Po requiresthe computation of  and , respectively. Scalable alterna-
tives are the Popov-Belevitch-Hautus tests for stabilisability
and detectability: Necessary and sufficient conditions are
Lemma 4. (Hautus, 1970). Let �(A) = {�i}

Nx
i=1 be the spec-

trum of A and �̃(A) = {�i ∈ �(A) ∣ Re(�i) ≥ 0} be the set of
eigenvalues with positive real part. The statement ‘the pair
(A,B) is stabilizable’ is equivalent to the statements:

rank(
[

�I − A B
]

) = Nx, ∀� ∈ ℂ;
rank(

[

�iI − A B
]

) = Nx, ∀�i ∈ �̃(A) ⊂ ℂ≥0.

Lemma 5. (Hautus, 1970). Let �(A) = {�i}
Nx
i=1 be the spec-

trum of A and �̃(A) = {�i ∈ �(A) ∣ Re(�i) ≥ 0} be the set of
eigenvalues with positive real part. The statement ‘the pair
(A,C) is detectable’ is equivalent to the following statements:

rank(
[

�I − AT CT
]T) = Nx, ∀� ∈ ℂ;

rank(
[

�iI − AT CT
]T) = Nx, ∀�i ∈ �̃(A) ⊂ ℂ≥0.

Based on Lemma 4, (A,B) is stabilizable if and only if, for
each unstable eigenvalue �i of A (Re(�i) ≥ 0 and rank(�iI −
A) < Nx), the columns of B have at least one component in
the direction �i ∈ ℝNx , the eigenvector of A associated to �i.Based on Lemma 5, (A,C) is detectable if and only if, for
each unstable eigenvalue �i of A (Re(�i) ≥ 0 and rank(�iI −
AT) < Nx), the rows of C have at least one component in
the direction of the eigenvector of A corresponding to �i,
�i ∈ ℝNx . Notice that every system (A,B, C) with a stable
matrix A is both stabilizable and detectable, since �̃(A) = ∅.

3.2.2. Structural controllability and observability

Structural analysis aims at assessing a family of systems with
the same structure. The dynamics and measurement process
of a structured dynamical system (A,B, C) can be studied by
mapping its state and output equations onto the digraph

 = ( , ), (24)
where the vertex set = A∪B∪C consists of the union of
vertex setsA =

{

x1,… , xNx

} of state,B =
{

u1,… , uNu

}

of control, and C =
{

y1,… , yNy

} of output components.
The edge set  = A ∪ B ∪ C is the union of set A =
{

(xnx , xn′x ) ∣ An′x,nx ≠ 0
} of directed edges between state

component vertices, set B =
{

(unu , xnx ) ∣ Bnx,nu ≠ 0
} of

directed edges between state and control component vertices,
and set C =

{

(xnx , yny ) ∣ Cny,nx ≠ 0
} of directed edges

between state and output component vertices.
The structural controllability of the family of systems with
dynamics represented by pair (A,B) can be studied through
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its associated directed subgraph c = (c , c), defined by
vertex set c = A∪B and edge set c = A∪B . By dual-ity, the structural observability of the family of systems with
measurement process represented by (A,C) can be studied
through its associated directed subgraph o = (o, o), de-fined by vertex set o = A ∪C and edge set o = A ∪ C .
The pair (A,B) is structurally controllable if the nonzero
elements ofA andB can be set in such a way that the system is
controllable in the classical sense. Pair (A,C) is structurally
observable if the nonzeros ofA andC can be set in such a way
that the system is observable in the classical sense. Formally,
for an arbitrarily small " > 0, we have the definitions
Definition 5. (Structural controllability, (Lin, 1974)). The
pair (A,B) is structurally controllable if and only if there
exists a controllable pair (Ā, B̄) of the same dimension and
structure of (A,B) such that ‖Ā−A‖ < " and ‖B̄ −B‖ < ".
Definition 6. (Structural observability, (Lin, 1974)). The
pair (A,C) is structurally observable if and only if there exists
an observable pair (Ā, C̄) of the same dimension and structure
of (A,C) such that ‖Ā − A‖ < " and ‖C̄ − C‖ < ".

Two pairs (A,B) and (Ā, B̄) have the same structure if they
have the same dimensions and each element An′x,nx ≠ 0 (re-spectively, Bnx,nu ≠ 0) whenever Ān′x,nx ≠ 0 (respectively,
B̄nx,nu ≠ 0). The same applies for pairs (A,C) and (Ā, C̄).
Necessary and sufficient conditions for structural controlla-
bility and observability can be derived from (Lin, 1974):
Lemma 6. Let c = (c , c) be the network associated to
the pair (A,B). The pair (A,B) is said to be structurally
controllable if and only if the following conditions hold:

• (Accessibility) For every xnx ∈ A there exists at least
one directed path from any unu ∈ B to xnx .

• (Dilation-free) For every  ⊆ A, |T ()| ≥ ||,
where T () = {vj ∈ c | xnx ∈  , (vj , xnx ) ∈ c}
denotes a neighbourhood set for  .

Lemma 7. Let o = (o, o) be the network associated to
the pair (A,C). The pair (A,C) is said to be structurally
observable if and only if the following conditions hold:

• (Accessibility) For every xnx ∈ A there exists at least
one directed path from xnx to any yny ∈ C .

• (Contraction-free) For every  ⊆ A, |T ()| ≥ ||,
where T () = {vj ∈ o | xnx ∈  , (xnx , vj) ∈ o}
denotes a neighbourhood set for  .

The first condition in Lemma 6 can be verified by identifying
the state vertices that are accessible from each possible origin
vertex (a control). Similarly, the first condition in Lemma
7 can be verified by identifying the output vertices that are
accessible from each possible origin vertex (a state compo-
nent). Any graph search algorithm can be used for both tasks

Network  = ( , )
u1

x1

x2 x3

y1

b1

a21 a31 c3

Structured dynamical system

A =
⎡

⎢

⎢

⎣

0 0 0
a21 0 0
a31 0 0

⎤

⎥

⎥

⎦

, B =
⎡

⎢

⎢

⎣

b1
0
0

⎤

⎥

⎥

⎦

;

C =
[

0 0 c3
]

;

Figure 2: Example 3.1: Network  = ( , ), left, associated to
the structured dynamical system (A,B, C), right.

(Cormen et al., 2009). The second condition in both lemmas
can be verified by forming a maximum matching  ⊆ Γ of
an equivalent bipartite graph = (+A ,

−
A ,Γ), then checkingthat all unmatched state vertices xj ∈ −A are directly con-

nected to distinct control vertices in c = (c , c), in case of
Lemma 6, or are directly connected to distinct output vertices
in o = (o, o) in case of Lemma 7 (Liu et al., 2011).
The maximum matching problem consists of identifying a
(possibly not unique) subset of edges without common ver-
tices that has maximum cardinality. The bipartite graph  =
(+A ,

−
A ,Γ) is defined by the disjoint and independent vertexsets +A = {x+1 ,… , x+Nx

} and −A = {x−1 ,… , x−Nx
}, and by

the undirected edge set Γ = {(x+n′x
, x−nx ) | (xn′x , xnx ) ∈ A}.

Unmatched state vertices linked to distinct control or out-
put vertices form a −A−perfect matching. The dilation-free
condition is guaranteed from the Hall’s theorem (Hall, 1935).
Example 3.1 illustrates the concepts presented in this section.
Example 3.1. Consider the structured dynamical system
(A,B, C) and associated network  = ( , ) in Fig. 2.
The pair (A,B) is not structurally controllable, as subgraph
c = (c , c) does not satisfy the dilation-free condition: The
subset  = {x2, x3} is larger than its in-neighbourhood set
T () = {x1}. Similarly, the pair (A,C) is not structurally
observable, as subgraph o = (o, o) fails to meet both ac-
cessibility and contraction-free conditions: There is no path
from x2 to output y1, and the subset  = {x1, x2} is larger
than its neighbourhood set T () = {x1}. As a result, the sys-
tem (A,B, C) is uncontrollable and unobservable also in the
conventional sense for all realisation of its nonzero entries.
This can be confirmed by verifying that the controllability
and observability matrices are of the forms

 =
⎡

⎢

⎢

⎣

b1 0 0
0 a21b1 0
0 a31b1 0

⎤

⎥

⎥

⎦

;  =
⎡

⎢

⎢

⎣

0 0 c3
a31c3 0 0
0 0 0

⎤

⎥

⎥

⎦

, (25)

which are always rank-deficient. Note that augmenting the
state-space with a control u2 (respectively, a sensor y2) act-
ing on (measuring) state-variable x2 leads to a structural
controllable (observable) system.

Strong controllability and observability

Based on Lin (1974), a structurally controllable (respectively,
structural observable) systemmight, under certain conditions,
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still admit full-state uncontrollable (respectively, full-state
unobservable) realisations (Zhao et al., 2015). This limitation
can be overcome with the notions of strong structural con-
trollability and observability (Mayeda and Yamada, 1979).
A structural pair (A,B) is strongly controllable in a struc-
tural sense if every possible realisation of its nonzero entries
leads to a full-state controllable system. By duality, a struc-
tural pair (A,C) is strongly observable in a structural sense
if every possible realisation of its nonzero entries leads to a
full-state observable system. A strongly structurally control-
lable (respectively, observable) system is always structurally
controllable (observable), the converse is not always true:
Definition 7. (Strong structural controllability, (Mayeda and
Yamada, 1979)) The pair (A,B) is strongly structurally con-
trollable if and only if any pair (Ā, B̄) of the same dimension
and structure of (A,B) is controllable in the classical sense.
Definition 8. (Strong structural observability, (Mayeda and
Yamada, 1979)) The pair (A,C) is strongly structurally ob-
servable if and only if any pair (Ā, C̄) of the same dimension
and structure of (A,C) is observable in the classical sense.

Sufficient and necessary conditions for strong structural con-
trollability of (A,B) can be derived from its associated net-
work c = (c , c) and a digraph ̃c = (c , ̃c), in which

̃c =
{

(xnx , xn′x ) ∣ An′x,nx ≠ 0, n
′
x ≠ nx

}

∪
{

(xnx , xnx ) ∣ Anx,nx = 0
}

∪ B . (26)
The conditions for strong structural observability of (A,C)
result from o = (o, o) and a digraph ̃o = (o, ̃o) where

̃o =
{

(xnx , xn′x ) ∣ An′x,nx ≠ 0, n
′
x ≠ nx

}

∪
{

(xnx , xnx ) ∣ Anx,nx = 0
}

∪ C . (27)
Lemma 8. (Jia et al., 2021). Let c = (c , c) be the net-
work associated to the pair (A,B) and ̃c = (c , ̃c) an alter-
native graph with edge set ̃c defined by Eq. (26). The pair
(A,B) is said to be strongly structurally controllable if and
only if both c = (c , c) and ̃c = (c , ̃c) are colourable.

Lemma9. (Jia et al., 2021). Leto = (o, o) be the network
associated to the pair (A,C) and ̃o = (o, ̃o) an alternative
graph with edge set ̃o defined by Eq. (27). The pair (A,C)
is said to be strongly structurally observable if and only if
both o = (o, o) and ̃o = (o, ̃o) are colourable.

The networks c and ̃c are colourable if all nodes xnx ∈ Aare coloured black according to the following procedure:
Definition 9. (Jia et al., 2021). Let  = ( , ) be a digraph.
1) Initially, colour all vertices v ∈  white;
2) Colour vj ∈  black if it is the only white out-neighbour

for any fixed vi ∈  and (vi, vj) ∈  ;
3) Repeat step 2 until no more colour changes are possible.

u1

x1

x2 x3

Initial

u1

x1

x2 x3

Final

C
on

tr
ol
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bi
lit
y

b1

a21 a31

b1

a21 a31
x1

x2 x3

y1

u1

Initial

x1

x2 x3

y1

u1

Final

O
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bi
lit
y

a21 a31 c3
a21 a31 c3

Figure 3: Example 3.1: The colouring procedure applied to
the subgraphs c = (c , c), left, and o = (o, o), right. As
not all nodes xnx ∈ A can be coloured black, neither graph is
colourable and the system (A,B, C) is thus uncontrollable and
unobservable in a strong structural sense, an expected result.
Note that augmenting the state-space with a control u2 (re-
spectively, a sensor y2) acting on (measuring) state-variable x2
leads to a strongly structural controllable (observable) system.

By duality, this notion of colorability is similarly defined for
the subgraphs o and ̃o by inverting the edge direction in
step 2. This colouring procedure is illustrated in Fig. 3.

Controllability and observability centralities

The relevance of a node in a graph is quantified by its cen-
trality (Estrada and Knight, 2015). We overview the central-
ity of individual state variables as encoded by the subgraph
A = (A, A) of state nodes and their mutual relations. We
look at node centralities as basic structural equivalent of con-
trol and observation energy-based metrics (Bof et al., 2017).
The in-degree centrality of state node xnx is defined as

kin(nx) = [A1]nx , (28)
where 1 is a Nx-th dimensional vector of all ones. kin(nx)counts incoming edges to node xnx , the number of state vari-
ables that directly affect its dynamics. For observability,
kin(nx) quantifies how many state variables are indirectly
observed if we were to measure only the nx-th state variable.
The out-degree centrality of state node xnx is defined as

kout(nx) =
[

AT1
]

nx
. (29)

kout(nx) counts the outgoing edges from node xnx , the number
of state-variables whose dynamics are directly affected by the
nx-th state variable. For controllability, kout(nx) measures
the number of state variables whose evolution is indirectly
affected if we were to control only the nx-th state variable.

4. The activated sludge plant: Structural and
classical dynamical properties

In this section, we analyse the full-state controllability and ob-
servability properties for the class of activated sludge plants
represented by Eq. (5) defined in Section 2. The presentation
begins with the structural controllability and observability
analysis of system (A,B, C) describing the structure of the
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Figure 4: Network  = ( , ) (left) for structured system
(A,B, C) (right). State vertices xnx ∈ A are in black, input
vertices unu ∈ B in blue, and output vertices yny ∈ C in
red. State-state (xnx , xn′x ) ∈ A, input-state (unu , xnx ) ∈ B, and
state-output edges (xnx , yny ) ∈ C are dyed to match the corre-
sponding entries in (A,B, C). Self-loops have been omitted.

ASP. A classical analysis of stability, controllability, and
observability, is then performed for a standard linearisation
(ASS , BSS , CSS ) of the model. A minimal realisation of this
linearisation is also used to discuss the approximated system.

4.1. Structural properties

For the activated sludge plant ẋ(t) = f (x(t), u(t), w(t)|�x)with measurements y(t) = g(x(t)|�y) the structural matri-
ces A ∈ ℝNx×Nx , B ∈ ℝNx×Nu , and C ∈ ℝNy×Nx are
obtained from the Jacobians A = )f∕)x, B = )f∕)u, and
C = )g∕)x with Nx = 145, Nu = 13 and Ny = 15. The
associated digraph  = ( , ) has the vertex and edge sets
 = A ∪ B ∪ C
= {x1,… , xNx

} ∪ {u1,… , uNu
} ∪ {y1,… , yNy

}; (30a)
 = A ∪ B ∪ C
= {(xnx , xn′x ) ∣ An′x,nx ≠ 0} ∪ {(unu , xnx ) ∣ Bnx,nu ≠ 0}

∪ {(xnx , yny ) ∣ Cny,nx ≠ 0}. (30b)

We discuss the structural controllability and observability of
the pairs (A,B) and (A,C) and associated digraphs, Fig. 4.

4.1.1. Controllability and observability

The structural pair (A,B) associates with the directed sub-
graph c = (c , c), with c = A ∪ B and c = A ∪ B .The topology of c = (c , c) shows that pair (A,B) is struc-turally controllable (Lemma 6). Accessibility is satisfied, all
state vertices are reachable from a control vertex: All nodes
are reachable through one-edge paths from control vertex
QR or QW . Dilation-free is satisfied with a perfect matching
 of size || = Nx formed by choosing every state ver-
tex’s self-loop, thus leaving no vertex unmatched. A perfect
matching such as  ensures the dilation-free condition and
suggests that controls are only needed to ensure accessibility.
The topology of c = (c , c) shows that (A,B) is not

strongly structurally controllable: It is not possible to find
a colouring for both graph c = (c , c) and modified
graph ̃c = (c , ̃c) in which all vertices xnx ∈ A are
coloured (Lemma 8). For c = (c , c), only the nodes as-
sociated to {SA(r)O }5r=1 and {SS(l)I , SS(l)S , SS(l)O , SS(l)NO , S

S(l)
NH ,

SS(l)ND , S
S(l)
ALK}

10
l=7 can be coloured by following the procedure

in Definition 9. Being (A,B) not-controllable in a strong
structural sense, there exist realisations of A and B for which
the system is not controllable in a classical sense. Being struc-
turally controllable, (A,B) is also controllable in a classical
sense, for almost all possible realisations of A and B.
The structural pair (A,C) associates with the subgraph o =
(o, o), with o = A∪C and o = A∪C . The topologyof o = (o, o) indicates that pair (A,C) is not structurallyobservable (Lemma 7). As there are no paths from state
vertices {SA(r)ALK}

5
r=1, {SS(l)ALK}

10
l=1 and {SS(l)O }10l=7 to any of

the output vertices, the accessibility condition is not satisfied.
Conversely, the contraction-free condition is satisfied by the
same matching  of size || = Nx as before, obtained by
choosing every state vertex’s self-loop. The lack of structural
observability implies non-observability in a classical sense.
As expected, the topology of o = (o, o) indicates that pair
(A,C) is also not strongly structurally observable: It is not
possible to find a colouring for both graph o = (o, o) and
modified graph ̃o = (o, ̃o) in which all vertices xnx ∈
A are coloured (Lemma 9). For instance, only the nodes
associated to {SA(r)O , SA(r)NO }

5
r=1 and {XS(l)

SS , S
S(l)
NH}

10
l=6 can be

coloured in o = (o, o) by the procedure in Definition 9.

4.1.2. Controllability and observability centrality

The relevance of each state node in the network can be quanti-
fied in terms of their in-degree and out-degree centrality, Eq.
(28) and (29). Figure 5 shows how particulate components
{XA(1)

S , XA(1)
BA , XA(1)

BH , XA(1)
P , XA(1)

ND } and soluble components
{SA(r)NH , S

A(r)
ALK}

5
r=1 are among the state vertices with highest

in-degree centralities. This indicates that a large portion of
the state-space can be directly observed by a sensor configu-
ration that directly measures those state variables.
Similarly, particulates {XA(1)

S , XA(1)
BA , XA(1)

BH , XA(1)
P } and oxy-

gen SA(1⇝5)O , are also among the state vertices of highest
out-degree centralities. Thus, a large portion of the network
can be directly controlled by an input configuration that ma-
nipulates those variables. However, note that it is possible to
controlSA(r)O (throughKLa(r)), while individually controlling
(or measuring) any of the concentrationsXA(r)

BH ,XA(r)
BA ,XA(r)

P ,
or XA(r)

I , is practically unfeasible. Moreover, the species in
the reactors have higher centralities than those in the settler.
We conclude that, for the activated sludge plant in Eq. (5),
it is possible to design a control u(⋅) that transfers the plant
to a desired state, in finite time, regardless of the realisation
of (A,B). It is not possible, however, to determine an initial
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Figure 5: Network  = ( , ): In-degree, kin(nx), and out-degree, kout(nx), centralities associated to each state node xnx ∈ A.

state x(t0), and thus neither intermediate states x(t), from
measurements y(t0 ⇝ tf ). As a result, it is not possible todesign a full-state observer based on such measurements and
model, whatever the realisation of (A,C). Being of structural
nature, the conclusions are valid also in a classical sense.

4.2. Classical properties of a common linearisation

We now consider the linearisation (ASS , BSS , CSS ), cor-
responding to the fixed point SS ≡ (xSS , uSS , wSS , ySS )
considered by Gernaey et al. (2014). This linearisation is
commonly utilised in the literature and constitutes the default
configuration of the BSM1. The matrices ASS ∈ ℝNx×Nx ,
BSS ∈ ℝNx×Nu , and CSS ∈ ℝNy×Nx are obtained from
the Jacobians evaluated at such equilibrium point ASS =
()f∕)x)|SS , BSS = ()f∕)u)|SS , and CSS = ()g∕)x)|SS .
The, now weighted, associated digraph SS = (SS , SS ),shown at Fig. 6, is defined by the vertex and edge sets
SS = ASS ∪ BSS ∪ CSS

= {x1,… , xNx
} ∪ {u1,… , uNu

} ∪ {y1,… , yNy
}

SS = ASS ∪ BSS ∪ CSS
= {(xnx , xn′x ) ∣ A

SS
n′x,nx

≠ 0} ∪ {(unu , xnx ) ∣ B
SS
nx,nu

≠ 0}

∪ {(xnx , yny ) ∣ C
SS
ny,nx

≠ 0}.

We discuss the stability of (ASS , BSS , CSS ) and the classic
controllability and observability properties of (ASS , BSS )
and (ASS , CSS ). For completeness, we use the approxima-
tion to validate the structural results that we reported earlier.

4.2.1. Stability

The spectrum of ASS consists of 69 distinct eigenvalues
and associated eigenvectors, �(ASS ) = {�i(ASS ), �i(�i)}69i=1,with {�1,⋯ , �31} ⊂ ℝ and {(�32, �∗32),⋯ , (�69, �∗69)} ⊂ ℂ,
Fig. 7. Five complex conjugate pairs of eigenvalues have
algebraic multiplicity equal to two and two distinct real eigen-
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Figure 6: Network SS = (SS , SS ) (left) associated to lin-
earisation (ASS , BSS , CSS ) (right). State vertices xnx ∈ ASS
and state-state edges (xnx , xn′x ) ∈ ASS are in black, input ver-
tices unu ∈ BSS and input-state edges (unu , xnx ) ∈ BSS are in
blue, and output vertices yny ∈ CSS and state-output edges
(xnx , yny ) ∈ CSS are in red. State self-loops have been omitted.

0

Figure 7: Spectrum �(ASS ): Eigenvalues �i ∈ �(ASS ) and as-
sociated eigenvectors �i(�i) (left and right panels, respectively).
The grid in the complex plane displays lines corresponding to
constant damping factors (diagonal lines) and natural frequen-
cies (vertical lines, in rad/days) for the associated modes.

values have algebraic multiplicities equal to two and twenty-
eight, respectively. The distribution of eigenvalues in the
complex plane shows that most of the modes have relatively
slow time constants. As most eigenvalues are close to the
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Figure 8: The normalised modes tke�it∕maxt tke�it (k = 0,⋯ , �(�i) − 1) for the real eigenvalues (top) and complex conjugated pairs
of eigenvalues (bottom) from the spectrum �(ASS ) = {�i, �i(�i)}

Nx
i=1. Grouping is based on each mode’s time constant �i = 1∕Re[�i].

real axis, pseudo-oscillatory behaviour is barely noticeable.
Being Re(�i) < 0 for all �i ∈ �(ASS ), then ASS is Hurwitz
and (ASS , BSS , CSS ) is asymptotically stable (Section 3.1).
This result can also be visualised through the simulation of
individual system modes, shown in Fig. 8. As the unforced
evolution of the system, from any x(0), is a linear combination
of system modes, the fact that all curves converge to zero
further confirms that the system is asymptotically stable.

4.2.2. Controllability and observability

Regarding the controllability of pair (ASS , BSS ) and associ-
ated digraph cSS = (cSS , cSS ), with cSS = ASS ∪BSSand cSS = ASS ∪ BSS , the topology of the network
indicates that (ASS , BSS , CSS ) is controllable in a struc-
tural sense (Lemma 6). Because pair (ASS , BSS ) corre-
sponds to the linear time-invariant approximation of Eq.
(5a) about steady-state point SS, it is possible to study
its controllability also in a conventional sense. Classical
controllability can be verified with a PBH test (Lemma 1),
as an accurate computation of the controllability matrix
 = [BSS ASSBSS ⋯ (ASS )Nx−1BSS ] is ill-posed.
Surprisingly, the PBH test contradicts the structural result
and returns that (ASS , BSS ) is not controllable in the clas-
sical sense. Specifically, a real eigenvalue with algebraic
multiplicity equal to 28 leads to a rank-deficient matrix
[�iI − ASS BSS ]. The twenty-eight associated eigenvec-
tors are shown in Fig. 9, top. Interestingly, the non-zero
entries of the eigenvectors correspond to state variables rela-
tive to soluble matter in the settler’s last layer, showing that
it is not possible to synthesise a control u(⋅) that enforces a
desired profile of soluble matter in the settler. As ASS is Hur-
witz the eigenvalue failing the PBH test satisfies Re(�i) < 0indicating that the pair (ASS , BSS ) is stabilizable (Lemma 4).
The apparent contradiction between classical and structural
controllability results is explained in Subsection 4.3.
Observability of the pair (ASS , CSS ) and associated digraph
oSS = (oSS , oSS ), with oSS = ASS ∪ CSS and oSS =
ASS ∪ CSS indicates that also the pair (ASS , BSS , CSS )
is not observable in a structural sense, as there is still no

directed path from the state vertices {SA(r)ALK}
5
r=1, {SS(l)ALK}

10
l=1

and {SS(l)O }10l=7 to any of the output vertices. Similarly, classi-
cal observability of (ASS , CSS ) can be verified only with the
PBH test (Lemma 2), because of the limitations in the com-
putation of  = [CSST ASSTCSST ⋯ (ASST )Nx−1CSST ]T.
The PBH test confirms that the pair (ASS , CSS ) is not ob-
servable. Ten distinct eigenvalues, including two real ones
with multiplicities equal to two and twenty-eight, respectively,
and five complex conjugated pairs with multiplicities equal
to two lead to rank-deficient matrices [�iI − ASST CSST ]T.The forty-three associated eigenvectors are shown in Fig.
9, bottom. As before, the non-zero entries of the eigenvec-
tors associated to one of the real eigenvalues refer to state
variables relative to effluent soluble matter. From the remain-
ing fifteen eigenvectors, three have non-zero entries only at
state variables {XA(r)

I , XA(r)
P }5r=1, while the other twelve have

non-zero entries only at state variables {SA(r)I , SA(r)ALK}
5
r=1 and

{SS(l)I , SS(l)ALK}
10
l=1. Interestingly, these correspond to concen-

trations of non-reacting matter. Because ASS is a stable
matrix, all eigenvalues failing the PBH test satisfy Re(�i) < 0,thus rendering the pair (ASS , CSS ) detectable (Lemma 5).
We conclude that for the approximation (ASS , BSS , CSS )
it is not possible to design a control u(⋅) that transfers the
plant to any state x(tf ) in finite time. Moreover, it is also not
possible to determine the initial state x(t0), and thus neitherintermediate states x(t), from measurements y(t0 ⇝ tf ).

4.2.3. Controllability and observability metrics and
minimal realisation

To provide a qualitative analysis of controllability and observ-
ability, we firstly analyse the effort associated with controlling
or observing each state variable individually. Then, we anal-
yse a minimal realisation of linearisation (ASS , BSS , CSS ).
Considering the linearisation (ASS , BSS , CSS ), the average
energy that is required to respectively control or reconstruct
the full-state by directly controlling or measuring only one
individual state variable is quantified by its average control-
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0

0

Figure 9: System (ASS , BSS , CSS ): Eigenvectors �i(�i) associated with eigenvalues �i ∈ �(ASS ) failing the PBH controllability test
(rank([�iI − ASS BSS ]) < Nx), top; and �i ∈ �(ASS ) failing the PBH observability test (rank([�iI − ASST CSST ]T) < Nx), bottom.

lability and average observability centralities, in Fig. 10.
Our results show that the energy required to reach any point
in the entire state-space is among the lowest if we were to
actuate on control variables only affecting biomass (XA(r)

BH ,
XA(r)
BA , and XA(r)

P ) or particulate inert organic matter (XA(r)
I )

in the reactors. This reflects the fact that such variables are
central to the process, but will evolve slowly if not controlled.
Conversely, the required energy would be the highest if we
were to actuate on controls only affecting dissolved oxygen
(SA(r)O ). Again, it is worth mentioning that it is still possi-
ble to control SA(r)O (through KLa(r)), whereas individually
controlling any of the concentrations XA(r)

BH , XA(r)
BA , XA(r)

P , or
XA(r)
I , is practically unfeasible. The analysis also shows that

acting directly on most state variables in the reactors is less
demanding than acting on any state variables in the settler.
Our results also show that the effort required to reconstruct
any point in the entire state-space is the lowest if we were to
directly measure suspended solids at the bottom of the settler
(XS(1)

SS ). Additionally, the effort required is also among the
lowest if we were to directly measure biomass (XA(r)

BH , XA(r)
BA ,

and XA(r)
P ) and particulate inert organic matter (XA(r)

I ) in
the reactors. Again, this confirms the importance of mea-
suring such variables and how reconstructing the state is
more demanding when they are not available. In practice,
only dissolved oxygen (SA(r)O ) and nitrate and nitrite nitrogen
(SA(r)NO ) in each reactor, along with NH+4+NH3 nitrogen in
the effluent (SS(10)NH ), are directly measured. These variables
are associated with the highest measurement effort if used
individually to reconstruct the entire state of the process.
To complete the analysis of (ASS , BSS , CSS ), we study the
compound energy-related metrics for the control and mea-

surement configuration. Being the linearisation both uncon-
trollable and unobservable, these Gramian-based metrics of
(ASS , BSS , CSS ) will obviously conclude that its control or
state reconstruction are infinitely demanding. Alternatively,
we further analyse (ASS , BSS , CSS ) using a minimal reali-
sation (Lemma 3), as it preserves its input-output behaviour,

ẋco(t) = Acoxco(t) + Bcou(t)
y(t) = Ccoxco(t),

with Aco ∈ ℝNxco×Nxco , Bco ∈ ℝNxco×Nu and Cco ∈
ℝNy×Nxco , for Nxco = 117. Note that, because �(Aco) ⊆
�(ASS ), it follows that Re(�i) < 0 for all eigenvalues �i ∈
�(Aco), and the minimal realisation (Aco, Bco, Cco) is stable.
We analysed the energy-related metrics defined for the
infinite-horizon controllability (Wc(∞)) and observability
(Wo(∞)) Gramians (Section 3.2.1). As the state matrix
is Hurwitz, these Gramians are computed by solving Lya-
punov equations AcoWc(∞) +Wc(∞)AT

co = −BcoBT
co and

Wo(∞)AT
co + AcoWo(∞) = −CT

coCco. The metrics (Table
2) reveal that controlling and observing this system is diffi-
cult, even for a minimal realisation. Specifically, the fact that
�min(Wc(∞)) and �min(Wo(∞)) are virtually zero implies the
existence of state-space directions which are unaccessible.

Table 2
System (Aco, Bco, Cco): Energy-related metrics.

trace(W ) trace(W †) log(det(W )) �min(W )

Wc(∞) 1.23 ⋅ 105 1.36 ⋅ 109 −∞ 1.01 ⋅ 10−11

Wo(∞) 0.52 6.76 ⋅ 1014 −∞ 5.69 ⋅ 10−19

We conclude that, though formally controllable and observ-
able, the realisation (Aco, Bco, Cco) requires large control and
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Figure 10: System (ASS , BSS , CSS ): On the left, the average controllability centrality Cc(nx), top, and average observability
centrality Co(nx), bottom, associated to each state variable xnx (nx = 1,… , Nx). On the right, the cumulative sum Λ(N) for
the eigenvalues of the infinite-horizon controllability Gramian Wc(∞), top, and the infinite-horizon observability Gramian Wo(∞),
bottom.

measurement efforts. The cumulative coverage of the mini-
mal state-space is shown in terms of a normalised cumulative
sum (Λ(N) = ∑N

n=1 �n∕
∑Nxco
nx=1

�nx ) for the (sorted) eigenval-
ues ofWc(∞) andWo(∞), Fig. 10. As more than 90% of the
coverage is reached with a small number of eigenvalues, the
state-space coverage implies that most of the control and out-
put energy are comprised within a small number of directions.
Together with Table 2, this shows that the input-output be-
haviour is mostly described by a small number of state-space
directions, some of which being virtually inaccessible.

4.3. About the contradiction between structural
and classical controllability results

When studying the controllability of (ASS , BSS , CSS ), we
have shown that (ASS , BSS ) is controllable in a structural but
not in a classical sense, a result that could be anticipated by the
fact that (A,B) is not controllable in a strong structural sense.
We further explain the apparent contradiction from the analy-
sis of the dilation-free condition on cSS = (cSS , cSS ).
Specifically, as the existence of a self-loop for each state ver-
tex is sufficient to satisfy the dilation-free condition, input
vertices are needed only to satisfy the accessibility condi-
tion. Whenever some of the self-loop weights are equal, the
dilation-free condition will underestimate the controls needed
for full-state controllability (Zhao et al., 2015). This is the
case for (ASS , BSS ), where all reactors’ non-reacting com-
ponents (respectively, all settler’s soluble components) from
the same unit (layer) always have identical self-dynamics.
Consider non-reacting components SA(r)a (a ∈ {I, ALK})
and XA(r)

b (b ∈ {I, P }) in the r-th reactor. For all r =
1,… , 5, their dynamics in Eq. (5a) are each of the form
ṠA(r)a = QA(r)(SA(r−1)a −SA(r)a )−(Q(r)EC∕V

(r))SA(r)a +R(r)a and
ẊA(r)
b = QA(r)(XA(r−1)

b −XA(r)
b ) − (Q(r)EC∕V

(r))XA(r)
b +R(r)b ,

with QA(r) denoting influent flow-rates and R(r)a and R(r)b in-
dicating the contribution from reactions. The model assumes

equal influent flow-rates, {QA(r) = (QA + QR + QIN +
∑r−1
j=1Q

(j)
EC )∕V

(r)
A }5r=1, and constant volumes V (1⇝2)A =

1000 m3 and V (3⇝5)A = 1333 m3. As SA(r)a and XA(r)
b are

non-reacting, we have )R(r)a ∕)SA(r)a = )R(r)b ∕)X
A(r)
b = 0.

For the relevant entries in the Jacobian )f∕)x, we have
)ṠA(r)a

)SA(r)a

|

|

|

|

|

|SS

=
)ẊA(r)

b

)XA(r)
b

|

|

|

|

|

|SS

= −
QA +QR +QIN +

∑r
j=1Q

(j)
EC

V (r)A

|

|

|

|

|

|SS

,

which is equal for all reactors, regardless of fixed-point SS.
Similarly, the dynamics of the soluble components SS(l)c(c ∈ {I, S,O,NO,NH,ND,ALK}) in the l-th layer of
the settler are each represented in Eq. (5a) by first-order
differential equations of the form ṠS(l)c = QS(l)(SS(l

′)
c −

SS(l)c ), for l = 1,… , 10. QS(l) denotes the influent flow-rate
to the l-th layer. The model assumes a same influent flow-rate
for all upper layers, {QS(l) = (QIN −QW )∕V (l)S }10l=7, for all
lower layers, {QS(l) = (QR +QW )∕V

(l)
S }5l=1, and for the

feed layer we have QS(6) = (QIN +QR)∕V (l)S . The model
also assumes constant volume hold-ups V (l)S = 600 m3.
For the relevant entries in the Jacobian matrix )f∕)x,

)ṠS(l)c

)SS(l)c

|

|

|

|

|

|SS

=

⎧

⎪

⎨

⎪

⎩

−(QIN −QW )∕V
(l)
S
|

|

|SS
(l = 7,⋯ , 10)

−(QIN +QR)∕V
(l)
S
|

|

|SS
(l = 6)

−(QR +QW )∕V
(l)
S
|

|

|SS
(l = 1,⋯ , 5)

,

which is equal for all components, whatever the fixed-point.
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5. The activated sludge plant: Properties of
certain alternative control configurations

We complete our study with an analysis of two alternative
configurations of the activated sludge plant defined in Sec-
tion 2. We firstly study the ASP when the Takács’ model
of the settler is replaced by a simpler 3-layer model with
the same structure, while retaining our setup for the sensors
and actuators. Secondly, we consider the ASP with the full
process model under the minimal configuration of sensors
and actuators as proposed in the original benchmark.

5.1. ASP with a simplified model for the settler

Because of the impossibility to reach any desired concentra-
tion profile along the settler with the given controls (Section
4.2.2), we are interested in a potentially controllable repre-
sentation with a reduced number of identical self-dynamics.
We consider a 3-layer model of the settler for the concentra-
tions of soluble matter: The layers are top, feed, and bottom
ones. The variables related to soluble matter in the l-th layer
are x̃S(l) = (SS(l)I , SS(l)S , SS(l)O , SS(l)NO , S

S(l)
NH , S

S(l)
ND , S

S(l)
ALK ),

̇̃x(t) = f̃ (x̃(t), u(t), w(t)|�x); (32a)
y(t) = g(x̃(t)|�y), (32b)

consists ofNx̃ = 13×5+10+7×3 = 96 state variables x̃(t) =
(

(xA(1),⋯ , xA(5)), (XS(1)
SS ,⋯ , XS(10)

SS , x̃S(1), x̃S(6), x̃S(10))
)T

∈ ℝNx̃
≥0 . Inputs u(t) ∈ ℝNu

≥0 andw(t) ∈ ℝNw
≥0 , and the outputs

y(t) ∈ ℝNy
≥0 are unchanged: Nu = 13,Nw = 14,Ny = 15.

The structural realisation of matrices As ∈ ℝNx̃×Nx̃ , Bs ∈
ℝNx̃×Nu , and Cs ∈ ℝNy×Nx̃ can be obtained as As = )f̃∕)x̃,
Bs = )f̃∕)u, and Cs = )g∕)x̃. The digraph s = (s, s)associated to (As, Bs, Cs), Fig. 11, has vertex and edge sets
s = As ∪ Bs ∪ Cs
= {x1,… , xNx̃

} ∪ {u1,… , uNu
} ∪ {y1,… , yNy

};

s = As ∪ Bs ∪ Cs
= {(xnx , xn′x ) ∣ [As]n′x,nx≠ 0}∪{(unu , xnx ) ∣ [Bs]nx,nu≠ 0}

∪ {(xnx , yny ) ∣ [Cs]ny,nx ≠ 0}.

The numerical realisation (ASSs , BSSs , CSSs ) is obtained for
the usual equilibrium point SS ≡ (xSS , uSS , wSS , ySS ) of
Gernaey et al. (2014) by evaluating the Jacobians: ASSs =
)f̃∕)x̃|SS , BSSs = )f̃∕)u|SS , and CSSs = )g∕)x̃|SS .
We discuss the properties of the realisations (As, Bs, Cs) and
(ASSs , BSSs , CSSs ) associated to this simplified model. We
show that the system is now controllable, but it is still unob-
servable, in both a structural and in a classical sense.
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Figure 11: Network s = (s, s) (left) associated to (As, Bs, Cs)
(right). State vertices xnx ∈ As are in black, input vertices
unu ∈ Bs are in blue, and output vertices yny ∈ Cs are in red.
State-state edges (xnx , xn′x ) ∈ As , input-state edges (unu , xnx ) ∈
Bs , and state-output edges (xnu , yny ) ∈ Cs are dyed to match
the corresponding entries in (As, Bs, Cs). Self-loops are omitted.

5.1.1. Structural Analysis

Controllability: The structural pair (As, Bs) associates withsubgraph sc = (sc , sc ), with sc = As ∪ Bs and sc =
As ∪ Bs . The topology of sc = (sc , sc ) indicates thatpair (As, Bs) is structurally controllable (Lemma 6). The
accessibility condition is satisfied since all state vertices are
reachable from a control vertex: Specifically, it is possible
to see how the state nodes all are reachable through directed
paths from either control vertexQR orQW . The dilation-free
condition is satisfied through a perfect matching of size
|| = Nx̃ formed by choosing every state vertex’s self-loop.
The topology of sc = (sc , sc ) also shows that pair (As, Bs)is not strongly structurally controllable (Section 3.2.2): It is
not possible to find a colouring for both graphsc = (sc , sc )
and modified graph ̃sc = (sc , ̃sc ) in which all state nodes
xnx ∈ A are coloured (Lemma 8). Being not strongly struc-
turally controllable, there exist certain realisations of As and
Bs for which the system is uncontrollable in a classical sense.
Observability: The structural pair (As, Cs) associates withsubgraph so = (so , so ), with so = As ∪ Cs and
so = As ∪ Cs . The topology of so = (so , so ) indi-cates that pair (As, Cs) is structurally unobservable (Lemma
7). As there are still no paths from state vertices {SA(r)ALK}

5
r=1,

{SS(l)ALK}l=[1,6,10] and SS(10)O to any of the output vertices,
the accessibility condition is not satisfied. The contraction-
free condition is still satisfied through a perfect matching 
of choosing every state vertex’s self-loop. The topology of
so = (so , so ) also indicates that the structural pair (As, Cs)is not strongly structurally observable, an expected result.

5.1.2. Classical analysis

Controllability: The controllability of pair (ASSs , BSSs ) can
be verified using the PBH controllability test (Lemma 1),
as an accurate computation of the controllability matrix
s = [BSSs ASSs BSSs ⋯ (ASSs )Nx̃−1BSSs ] is unfeasible also
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0

Figure 12: Pair (ASS
s , CSS

s ): Eigenvectors �i(�i) with �i ∈ �(ASS
s ) failing the PBH observability test (rank([�iI−ASST

s CSST
s ]T) < Nx̃).

for this system. As [�iI − ASSs BSSs ] is full-rank for all
eigenvalues �i ∈ �(ASSs ), pair (ASSs , BSSs ) is controllable.
Observability: The observability of (ASSs , CSSs ) can be veri-
fied using the PBH observability test (Lemma 2), again be-
cause an accurate computation of the observability matrix
s = [CT

s A
SST
s CSSTs ⋯ (ASSTs )Nx̃−1CSSTs ]T is unfeasible.

The test confirms that (ASSs , CSSs ) is not full-state observable,
as ten distinct eigenvalues, including two real values withmul-
tiplicities equal to two, a real value with multiplicity seven,
and two complex conjugated pairs with multiplicities equal
to two, lead to rank-deficient matrices [�iI − ASSTs CSSTs ]T.
The twenty eigenvectors associated to such eigenvalues are
depicted in Fig. 12. The nonzero entries of these eigenvectors
relate to the same state variables associated to nonzero entries
of the eigenvectors from the PBH test of (ASS , CSS ), Fig. 9.

5.1.3. Results

We conclude that for the activated sludge plant with a simpli-
fied model for the settler, it is possible to design a control u(⋅)
that transfers the system to any desired state, in finite time.
This is true for almost any possible realisation of (As, Bs). Itis not possible, however, to determine the initial state x̃(t0),and thus neither intermediate states x̃(t), starting from a se-
quence of measurements y(t0 ⇝ tf ). Thus, it is also not
possible to design a full-state-observer based on the existing
measurements, no matter what realisation of (As, Cs) is used.
Being of structural nature, these conclusions are valid also in
a classical sense, regardless of the linearisation. For the lin-
earisation (ASSs , BSSs , CSSs ), it is possible to design a control
u(⋅) that is capable to transfers the system to a desired state
x̃(tf ) in finite time. It is not possible, however, to determine
x̃(t0) and the intermediate states x̃(t), from y(t0 ⇝ tf ).

5.2. BSM1’s actuator and sensor configuration

We further consider the ASP with the minimal set of actuators
and sensors proposed for the default low-level control of the
BSM1 (Gernaey et al., 2014). The state-space model

ẋ(t) = f (x(t), ũ(t), w(t)|�x); (34a)
ỹ(t) = g̃(x(t)|�y), (34b)

has state variables x(t) = ((xA(1),⋯ , xA(5)), (xS(1),⋯ ,
xS(10)))T ∈ ℝNx

≥0 , measurements ỹ(t) = (SA(5)O , SA(2)NO ,

XS(10)
SS , SS(10)NH , BODS(10)

5 , CODS(10), NS(10)
TOT )

T ∈ ℝNỹ
≥0 , con-

trols ũ(t) = (QA, KLa(5))T ∈ ℝNũ
≥0 , and disturbances w(t) =

(QIN , xA(IN))T ∈ ℝNw
≥0 . The model consists of the original

Nx = 145 state variables andNw = 14 disturbances, but ithasNũ = 2 controllable inputs andNỹ = 7 measurements.

5.2.1. Structural analysis

The structural matrices Ad ∈ ℝNx×Nx , Bd ∈ ℝNx×Nũ , and
Cd ∈ ℝNỹ×Nx are obtained from the Jacobians and the di-
graph d = (d , d), Fig. 13, has the vertex and edge sets
d = Ad ∪ Bd ∪ Cd

= {x1,… , xNx
} ∪ {u1,… , uNũ

} ∪ {y1,… , yNỹ
};

d = Ad ∪ Bd ∪ Cd
= {(xnx , xn′x ) ∣ [Ad]n′x,nx≠ 0}∪{(unu , xnx ) ∣ [Bd]nx,nu≠ 0}

∪ {(xnx , yny ) ∣ [Cd]ny,nx ≠ 0}.
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Figure 13: Network d = (d , d) associated to (Ad , Bd , Cd)
(left and right panels, respectively). State vertices xnx ∈ A
are in black, input vertices unu ∈ B are in blue, and output
vertices yny ∈ C are in red. State-state edges (xnx , xn′x ) ∈
A, input-state edges (unu , xnx ) ∈ B, and state-output edges
(xnx , yny ) ∈ C are dyed to match the corresponding entries in
(Ad , Bd , Cd). The state self-loops have been omitted.

Controllability: The structural pair (Ad , Bd) associates withsubgraph dc = (dc , dc ), with dc = Ad ∪ Bd and
dc = Ad ∪ Bd . The topology of dc = (dc , dc ) in-dicates that (Ad , Bd) is structurally controllable (Lemma 6).
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The accessibility condition is satisfied with all state vertices
reachable from a control vertex, with all state vertexes reach-
able through directed paths starting from the control vertex
QA. The dilation-free condition is satisfied through a perfect
matching  of size || = Nx formed by choosing every
state vertex’s self-loop, thus leaving no vertex unmatched. A
perfect matching such as  ensures the dilation-free con-
dition and suggests that controls are only needed to ensure
accessibility. This implies that the state can be controlled by
manipulating only the internal recirculation and then relying
on self-dynamics to reach any state in the state-space. Though
formally correct, such control strategy is clearly nonviable.
The topology of dc = (dc , dc ) also shows that (Ad , Bd) isnot strongly structurally controllable: It is not possible to find
a colouring for both graph dc = (dc , dc ) and modified
graph ̃dc = (dc , ̃dc ) in which all state vertices xnx ∈
A are coloured (Lemma 8). Being strongly structurally
uncontrollable, there exist certain realisations of Ad and Bdfor which the system is not controllable in a classical sense.
Observability: The structural pair (Ad , Cd) associates withsubgraph do = (do , do ), with do = Ad ∪ Cd and
do = Ad ∪ Cd . The topology of do = (do , do ) indi-cates that pair (Ad , Cd) is structurally unobservable (Lemma
7). Similarly to the original configuration, no paths starting
from state vertices {SA(r)ALK}

5
r=1, {SS(l)ALK}

10
l=1 and {SS(l)O }10l=7reach any of the output vertices. The accessibility condition is

therefore not satisfied. Conversely, the contraction-free con-
dition is still satisfied through a perfect matching of size
|| = Nx formed by choosing every state vertex’s self-loop.
As expected, the topology of do = (do , do ) also indicates
that (Ad , Cd) is also not strongly structurally observable.

5.2.2. Classical analysis

The numerical linearisation (ASSd , BSSd , CSSd ) is obtained for
the fixed point SS ≡ (xSS , uSS , wSS , ySS ) in Gernaey et al.
(2014) from the Jacobians evaluated at SS, to get ASSd =
)f∕)x|SS , BSSd = )f∕)ũ|SS , and CSSd = )g̃∕)x|SS .
Controllability: Based on the PBH controllability test
(Lemma 1), the pair (ASSd , BSSd ) is not full-state controllable,
as five complex conjugated pairs of eigenvalues with alge-
braic multiplicity equal to two and two real eigenvalues with
algebraic multiplicities equal to two and twenty-eight, respec-
tively, leads to rank-deficient matrices [�iI−ASSd BSSd ]. The
forty associated eigenvectors are shown in Fig. 14, top.
Note that the eigenvectors associated to the real eigenvalue
with multiplicity equal to twenty-eight have non-zero en-
tries at state variables relative to soluble matter in the set-
tler’s last layer, as already observed in Fig. 9. The other
twelve eigenvectors have non-zero entries only on state vari-
ables {SA(r)I , SA(r)ALK}

5
r=1 and {SS(l)I , SS(l)ALK}

10
l=1. We conclude

that, for the activated sludge plant described by the pair
(ASSd , BSSd ), it is not possible to design an input signal ũ(t)
that transfers the plant to a desired state, in finite time. More-

over, since ASSd is identical to the stable ASS , all eigenval-
ues failing the PBH test satisfy Re(�i) < 0 such that pair
(ASSd , BSSd ) is stabilizable (Lemma 4).
Observability: Based on he PBH observability test (Lemma
2), the pair (ASSd , CSSd ) is not full-state observable, as ten
distinct eigenvalues, including two real values with multi-
plicities equal to two and twenty-eight, respectively, and five
complex conjugated pairs with multiplicities equal to two,
lead to rank-deficient matrices [�iI − ASSTd CSSTd ]T. The
forty-three associated eigenvectors are in Fig. 14, bottom.
The nonzero entries of these eigenvectors relate to the same
state variables as the nonzero entries of the eigenvectors pre-
viously observed on the PBH test of pair (ASS , CSS ), Fig.
9. This implies that pair (ASS , CSS ), with Ny = 15 out-
puts, and pair (ASSd , CSSd ), with onlyNỹ = 7 outputs, share
the same observable subspace. Because ASSd is identical to
the stable ASS , all eigenvalues failing the PBH test satisfy
Re(�i) < 0 so that pair (ASSd , CSSd ) is detectable (Lemma 5).

5.2.3. Results

We conclude that for the activated sludge plant given by Eq.
(34) it is possible to design a control ũ(t) that transfers the
plant to a desired state, in finite time, for almost any possi-
ble realisation of (Ad , Bd). It is not possible, however, to
determine the initial state x(0), and thus neither intermediate
states x(t), starting from a measurement ỹ(tf ). Thus, it isalso not possible to design a full-state-observer based on ex-
isting measurements, no matter what realisation of (Ad , Cd)is used. As for the specific linearisation (ASSd , BSSd , CSSd ), it
is neither controllable nor observable in the classical sense.

6. Concluding remarks

The dynamical properties of a model describing a common
class of activated sludge plants are analysed, in a structural
and a classical sense. We discuss the capabilities and limita-
tions of the control and estimation tasks for activated sludge
plants described by the Benchmark Simulated Model no. 1.
The analysis is meant to provide a backbone for the design of
efficient model-based controllers of activated sludge plants.
Our analyses show that activated sludge plants described by
the BSM1 in Eq. (5) are full-state controllable but they are
not observable, in a structural sense. Our results show that
the plant is neither controllable nor it is observable in a strong
structural sense. Formally, it is thus possible to determine a
sequence of control actions that are capable to transfers the
state of the system to any desired point in the state-space, from
any initial state, in finite time, and for almost any realisation.
However, it is also not possible to determine the initial state
of the system, and thus neither its intermediate states, from
a finite sequence of measurements. That is, it is also not
possible to design a state-observer over the entire state-space.
For a linear approximation of the model which is commonly
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0

0

Figure 14: System (ASS
d , BSS

d , CSS
d ): Eigenvectors �i(�i) associated with �i ∈ �(ASS

d ) failing the PBH controllability test (rank([�iI−
ASS
d BSS

d ]) < Nx), top, and with �i ∈ �(ASS
d ) failing the PBH observability test (rank([�iI − ASST

d CSST
d ]T) < Nx), bottom.

used in the literature, we studied the stability, controllabil-
ity and observability, in a conventional sense. Under such
realisation, we found that this system is stable, but it is not full-
state controllable and it is not full-state observable. However,
being stable, the system is both stabilisable and detectable.
Energy-related metrics based on this linearisation show that
the effort required to control and observe the system is very
large. These efforts are among the lowest if biomass and par-
ticulate inert matter in the bio-reactors are directly controlled
or measured. As actuation and sensing devices capable to
directly control or measure these variables are practically
unfeasible, these strategies are virtually inviable. Finally, a
compound energy-related analysis shows that controlling and
observing the BSM1 are high-demanding tasks even for a
minimal and yet controllable and observable realisation.
The analysis of this class of activated sludge plants is ex-
tended on two alternative configurations of the system. We
considered a reduced automation setup and a reduced-order
model for the settler. For the first configuration, we found that
the system is controllable but not observable in a structural
sense, and that it is neither controllable nor observable in a
conventional sense. For the second configuration, we found
that this system is controllable but it is not observable in a
structural sense. In this case, however, the system is control-
lable in a conventional sense, under the usual linearisation.
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A. The Benchmark Model No. 1: State-space, parameters, equilibrium point, and
smoothification

The state-space model equations, alongside model parameters and complementary information, are provided for the BSM1.

A.1. Biological reactors

The dynamics within each r-th reactor, represented by the set of state variables xA(r) given in Section 2. For any ZA(r) ∈ xA(r),

ŻA(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Q(r)

V A(r)

[

ZA(r−1) −ZA(r)
]

−
Q(r)EC
V A(r)

ZA(r) + RZA(r) (r = 2,⋯ , 5)

1
V A(1)

[

QINZA(IN) +QAZA(5) +QRZS(1)
]

−
Q(1) +Q(1)EC
V A(1)

ZA(1) + RZA(1) (r = 1)

(35)

where Q(r) = (QIN +QA +QR +∑r−1
j=1Q

(j)
EC ), for all r = 1,⋯ , 5, and RZA(r) is the contribution from reactions associated to

component ZA(r) (Henze et al., 2000). Whenever ZA(r) = SA(r)O we add the term KLa(r)[SsatO − SA(r)O ] for both cases in Eq.
(35). When ZA(r) = SA(r)S we add (Q(r)EC∕V A(r))SECS , for both cases in Eq. (35).
The dynamics of the concentrations in reactors r = 2,⋯ , 5 are given by the set of differential equations

ṠA(r)I =
Q(r)

V A(r)

[

SA(r−1)I − SA(r)I

]

−
Q(r)EC
V A(r)

SA(r)I (36)

ṠA(r)S =
Q(r)

V A(r)

[

SA(r−1)S − SA(r)S

]

+
Q(r)EC
V A(r)

[

SECS − SA(r)S

]

(37)

−
�H
YH

SA(r)S

KS + S
A(r)
S

[ SA(r)O

KOH + SA(r)O

+ �g
KOH

KOH + SA(r)O

SA(r)NO

KNO + S
A(r)
NO

]

XA(r)
BH

+ kℎ
XA(r)
S

KXX
A(r)
BH +XA(r)

S

[ SA(r)O

KOH + SA(r)O

+ �ℎ
KOH

KOH + SA(r)O

SA(r)NO

KNO + S
A(r)
NO

]

XA(r)
BH

ẊA(r)
I =

Q(r)

V A(r)

[

XA(r−1)
I −XA(r)

I

]

−
Q(r)EC
V A(r)

XA(r)
I (38)

ẊA(r)
S =

Q(r)

V A(r)

[

XA(r−1)
S −XA(r)

S

]

−
Q(r)EC
V A(r)

XA(r)
S (39)

− kℎ
XA(r)
S

KXX
A(r)
BH +XA(r)
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KOH + SA(r)O

+ �ℎ
KOH
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A(r)
NO
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1 − fp
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bHX
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bAX
A(r)
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ẊA(r)
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XA(r−1)
BH −XA(r)
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XA(r)
BH (40)
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BA −XA(r)
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KNH + SA(r)NH
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KOA + S
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O
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BA − bAX

A(r)
BA (41)

ẊA(r)
P =

Q(r)
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XA(r−1)
P −XA(r)

P
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−
Q(r)EC
V A(r)

XA(r)
P + fP
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bHX
A(r)
BH + bAX

A(r)
BA
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ṠA(r)O =
Q(r)
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SA(r−1)O − SA(r)O
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ṠA(r)NO =
Q(r)

V A(r)

[

SA(r−1)NO − SA(r)NO

]

−
Q(r)EC
V A(r)

SA(r)NO (44)

−
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Q(r)
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]
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+ �ℎ
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+ �ℎ
KOH

KOH + SA(r)O

SA(r)NO

KNO + S
A(r)
NO

]

XA(r)
BH

+ bH
(

iXB − fP iXP
)

XA(r)
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[

SA(r−1)ALK − SA(r)ALK

]

−
Q(r)EC
V A(r)

SA(r)ALK (48)

−
iXB
14
�H

SA(r)S

KS + S
A(r)
S

SA(r)O
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A.2. Secondary settler

The dynamics for suspended solids in each l-th settler’s layer, XS(l)
SS , are described by

ẊS(l)
SS =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Qe
V S(l)

[

XS(l−1)
SS −XS(l)

SS

]

−
1

ℎS(l)
Jcla

(

XS(l)
SS , X

S(l−1)
SS

)

(l = 10)
Qe
V S(l)

[

XS(l−1)
SS −XS(l)

SS

]

+
1

ℎS(l)
[

Jcla
(

XS(l+1)
SS , XS(l)

SS

)

− Jcla
(

XS(l)
SS , X

S(l−1)
SS

)]

(l = 7,⋯ , 9)
Qf
V S(l)

[

Xf −X
S(l)
SS

]

+
1

ℎS(l)
[

Jcla
(

XS(l+1)
SS , XS(l)

SS

)

− Jst
(

XS(l)
SS , X

S(l−1)
SS

)]

(l = 6)
Qu
V S(l)

[

XS(l+1)
SS −XS(l)

SS

]

+
1

ℎS(l)
[

Jst
(

XS(l+1)
SS , XS(l)

SS

)

− Jst
(

XS(l)
SS , X

S(l−1)
SS

)]

(l = 2,⋯ , 5)
Qu
V S(l)

[

XS(l+1)
SS −XS(l)

SS

]

+
1

ℎS(l)
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(

XS(l+1)
SS , XS(l)
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)
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The dynamics of soluble matter ṠS(l)(⋅) within each l-th layer is

ṠS(l)(⋅) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Qe
V S(l)

[

SS(l−1)(⋅) − SS(l)(⋅)

]

(l = 7,⋯ , 10);
Qf
V S(l)

[

SA(5)(⋅) − SS(l)(⋅)

]

(l = 6);
Qu
V S(l)

[

SS(l+1)(⋅) − SS(l)(⋅)

]

(l = 1,⋯ , 5),

(49)

withXf = 0.75
(

XA(5)
I +XA(5)

S +XA(5)
BH +XA(5)

BA +XA(5)
P

)

, Qf = (QIN +QR), Qu = (QR +QW ), andQe = (QIN −QW ).
The downward and upward flux of solids are respectively given by

Jst
(

XS(l)
SS , X

S(l−1)
SS

)

= min
[

vs
(

XS(l−1)
SS

)

XS(l−1)
SS , vs

(

XS(l)
SS

)

XS(l)
SS

]

; (50)

Jcla
(

XS(l)
SS , X

S(l−1)
SS

)

=

{

min
[

vs
(

XS(l−1)
SS

)

XS(l−1)
SS , vs

(

XS(l)
SS

)

XS(l)
SS

]

if XS(l−1)
SS > Xt;

vs
(

XS(l)
SS

)

XS(l)
SS otherwise, (51)

in which
vs
(

XS(l)
SS

)

= max
{

0,min
[

vmax0 , v0
(

e−rℎ(X
S(l)
SS −fnsXf ) − e−rp(X

S(l)
SS −fnsXf )

)]}

. (52)

A.3. Smoothification of discontinuities

Jacobian linearisations require the functions f (⋅) and g(⋅) to be differentiable with respect to the state variables and the inputs.
Due to the discontinuities in the model of the settler, this is not true for the BSM1. A smooth approximation of the original
model was obtained by replacing the terms corresponding to minimum and maximum functions between two terms by a
log-sum-exp or softmax function, whereas a hyperbolic tangent function was used for approximating conditional statements.
We rewrite the condition for the downward flux of solids, Jcla(⋅) from Eq. (51), as

Jcla(⋅) = '(X
S(l−1)
SS ) min

[

vs
(

XS(l−1)
SS

)

XS(l−1)
SS , vs

(

XS(l)
SS

)

XS(l)
SS

]

+
[

1 − '(XS(l−1)
SS )

]

vs
(

XS(l)
SS

)

XS(l)
SS

with '(XS(l−1)
SS ) = 1 when XS(l−1)

SS −Xt > 0 and '(XS(l−1)
SS ) = 0 otherwise.

We approximate the step function '(XS(l−1)
SS ) with an hyperbolic tangent function

'(XS(l−1)
SS ) ≈ 0.5 + 0.5 tanh

(

50
(

XS(l−1)
SS −Xt

)

)

.

O. Neto, M. Mulas, F. Corona: Preprint Page 22 of 24



The dynamics of activated sludge plants

A.4. Model parameters

The model equations depend on the set of stoichiometric, kinetic and general parameters described in Table 3.

Table 3
Benchmark Model No. 1: Model constant parameters.

Stoichiometric parameter Value Units

YA Autotrophic yield 0.24 g XBA COD formed ⋅ (g N oxidised)−1

YH Heterotrophic yield 0.67 g XBH COD formed ⋅ (g COD utilised)−1

fP Fraction of biomass to particulate products 0.08 g XP COD formed ⋅ (g XBH decayed)−1

iXB Fraction nitrogen in biomass 0.08 g N (g COD)−1 in biomass
iXP Fraction nitrogen in particulate products 0.06 g N (g COD)−1 in XP

Kinetic parameter Value Units

�H Maximum heterotrophic growth rate 4.00 d−1

KS Half-saturation (heterotrophic growth) 10.0 g COD m−3

KOH Half-saturation (heterotrophic oxygen) 0.20 g O2 m−3

KNO Half-saturation (nitrate) 0.50 g NO3-N m−3

bH Heterotrophic decay rate 0.30 d−1

�g Anoxic growth rate correction factor 0.80 dimensionless
�ℎ Anoxic hydrolysis rate correction factor 0.80 dimensionless
kℎ Maximum specific hydrolysis rate 3.00 g XS (g XBH COD d)−1

KX Half-saturation (hydrolysis) 0.10 g XS (g XBH COD)−1

�A Maximum autotrophic growth rate 0.50 d−1

KNH Half-saturation (autotrophic growth) 1.00 g NH4-N m−3

bA Autotrophic decay rate 0.05 d−1

KOA Half-saturation (autotrophic oxygen) 0.40 g O2 m−3

ka Ammonification rate 0.05 m3 (g COD d)−1

Secondary settler parameter Value Units

vmax0 Maximum settling velocity 250.0 m d−1

v0 Maximum Vesilind settling velocity 474.0 m d−1

rℎ Hindered zone settling parameter 0.000576 m3 (g SS)−1

rp Flocculant zone settling parameter 0.00286 m3 (g SS)−1

fns Non-settleable fraction 0.00228 dimensionless

General parameter Value Units

V A(1⇝2) Reactor volume (anoxic section) 1000 m3

V A(3⇝5) Reactor volume (aerobic section) 1333 m3

V S(l) Settler layer volume 600 m3

ℎS(l) Settler layer height 0.4 m
SEC
S External carbon source concentration 4 ⋅ 105 g COD m−3

Ssat
O Oxygen saturation concentration 8.0 g O2 m−3

Xt Settling threshold concentration 3000 g m−3
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A.5. Common equilibrium point for linearisation

The conventional operation corresponding to the steady-state point SS ∶= (xSS , uSS , wSS , ySS ) is presented in Table 4.

Table 4
Benchmark Model No. 1: Steady-state point SS ∶= (xSS , uSS , wSS , ySS ).

Influent Reactor
IN A(1) A(2) A(3) A(4) A(5) Units

SI 30 30 30 30 30 30 g COD m−3

SS 69.5 2.81 1.46 1.15 0.995 0.889 g COD m−3

XI 51.2 1149 1149 1149 1149 1149 g COD m−3

XS 202.32 82.1 76.4 64.9 55.7 49.3 g COD m−3

XBH 28.17 2552 2553 2557 2559 2559 g COD m−3

XBA 0 148 148 149 150 150 g COD m−3

XP 0 449 450 450 451 452 g COD m−3

SO 0 0.0043 6.31E-5 1.72 2.43 0.491 g O2 m−3

SNO 0 5.37 3.66 6.54 9.30 10.4 g N m−3

SNH 31.56 7.92 8.34 5.55 2.97 1.73 g N m−3

SND 6.95 1.22 0.882 0.829 0.767 0.688 g N m−3

XND 10.59 5.28 5.03 4.39 3.88 3.53 g N m−3

SALK 7 4.93 5.08 4.67 4.29 4.13 mol HCO−
3 m−3

Settler Layer
S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) Units

XSS 6394 356.07 356.07 356.07 356.07 356.07 68.98 29.54 18.11 12.5 g COD m−3

SI 30 30 30 30 30 30 30 30 30 30 g COD m−3

SS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 g COD m−3

SO 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 g O2 m−3

SNO 10.42 10.42 10.42 10.42 10.42 10.42 10.42 10.42 10.42 10.42 g N m−3

SNH 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 g N m−3

SND 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 g N m−3

SALK 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.13 mol HCO−
3 m−3

Input Units

QIN 18846 m3 d−1

QA 55338 m3 d−1

QR 18446 m3 d−1

QW 385 m3

KLa(1) 0 d−1

KLa(2) 0 d−1

KLa(3) 240 d−1

KLa(4) 240 d−1

KLa(5) 84 d−1

Q(1)
EC 0 m3 d−1

Q(2)
EC 0 m3 d−1

Q(3)
EC 0 m3 d−1

Q(4)
EC 0 m3 d−1

Q(5)
EC 0 m3 d−1
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