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Abstract— In this work, the full-state controllability proper-
ties of a biological wastewater treatment plant are analysed.
Specifically, the five biological reactors in the Benchmark Sim-
ulation Model no. 1 are studied. For the task, we represented
the activated sludge plant as a dynamical system consisting of
65 states, 7 controls and 27 disturbances as a complex network
and we studied its controllability properties from a classical
and a structural point of view. By analysing the topology of
the network, we show how the system is controllable in the
structural sense and thus how it is controllable in the classical
sense for almost all realisations of its parameters. Interestingly,
we also found that the linearisation around a fixed point
commonly used in the literature leads to a realisation of the
system that is not full-state controllable in the classical sense.
We show how this realisation is controllable if the state variables
associated with inert matter are not considered. We quantify
the compound and individual control efforts of this reduced-
order system in terms of energy-based controllability metrics.

Index Terms— Environmental systems, activated sludge pro-
cess, controllability, structural control, complex networks.

I. INTRODUCTION

Wastewater treatment systems are facing unprecedented
challenges due to stricter effluent requirements, costs min-
imisation, sustainable reuse of water, nutrients and other
resources, as well as the increasing expectation in the public to
attain high service standards. Because of their wide diffusion,
activated sludge processes play a key role in the biological
treatment of wastewater and their efficient operation and
control has a large technological and societal importance.

Many control strategies for activated sludge plants have
been proposed in the industrial and academic literature, [1].
Large research efforts have been developed by using support
tools that establish a simulation protocol for real activated
sludge processes. Among them, the Benchmark Simulation
Model no. 1 (BSM1, [2]), the simulation protocol and general
platform for common activated sludge processes subjected to
typical municipal wastewater influents, has permitted the
design of a number of modelling and control solutions.
However, little has been done to analyse the dynamics of this
system, possibly because of the high-dimensionality of the
state vector and the numerous steady-state conditions. To the
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best of our knowledge, only few studies (see [3], [4]) discuss
state estimation and observability of BSMs analytically.

In this work, the controllability properties of a class
of activated sludge plants represented by the BSM1 are
investigated. For the task, we mapped the dynamical system
consisting of 65 state variables, 7 controls and 27 disturbances
onto a complex network and we studied its full-state control-
lability properties from a classical and a structural point of
view. As we are primarily interested in determining whether
the plant is controllable under all feasible linearisations,
we studied the structural controllability ([5], [6]) of the
model. According to our results, BSM1-plants are structurally
controllable and thus they are controllable also for almost
all linearisations. Structural controllability is also used to
show that a linearisation commonly used in the literature is
not full-state controllable, a result that is confirmed by the
classical Popov-Belevitch-Hautus test [7]. We complete this
work by reporting on compound energy-based controllability
metrics and individual control efforts ([8], [9]). The last
analysis refers to a reduced-order system of 55 state variables
in which variables corresponding to inert matter are removed
because decoupled or unreachable by the control variables.

The presentation is organised as follows: Section II
describes a activated sludge plant and associated state-space
model, Section III overviews the classical and structural notion
of full-state controllability, Section IV reports and discusses
our results about the full-state controllability and the control-
energy metrics for this class of activated sludge plants.

II. THE ACTIVATED SLUDGE PLANT

We consider the activated sludge process in a conventional
wastewater treatment plant. The process consists of five
sequential biological reactors and a secondary settler (Fig. 1).
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Fig. 1. The activated sludge plant.

The treatment is based on the denitrification-nitrification
process in which bacteria reduce nitrogen present in form of
nitrate and ammonia in the wastewater into nitrogen gas to
be released into the atmosphere. No chemicals are added
to the process and only oxygen is potentially added by
insufflating air into each reactor. In the aerated reactors, the
ammonium nitrogen (NH4-N) contained in the wastewater
is oxidised into nitrate nitrogen (NO3-N), which is in turn



reduced into nitrogen gas in the anoxic reactors. The process
begins with a first reactor where wastewater from primary
sedimentation, return sludge from secondary sedimentation
and internal recycle sludge are fed. The outflow from the first
reactor is then sequentially fed to the downstream reactors
and, eventually, from the fifth reactor to the secondary settler.
Mixed liquor from the fifth reactor is recirculated into the
first reactor together with the recycle sludge from secondary
sedimentation, as mentioned. Each reactor is described by
the Activated Sludge Model no. 1 [10], while the settler is
represented by the non-reactive model proposed in [11]. The
bioprocess thus corresponds to the Benchmark Simulation
Model no. 1 [2], here referred to as the activated sludge plant.

TABLE I
ACTIVATED SLUDGE PLANT: WASTEWATER CONCENTRATIONS, AS STATE

VARIABLES (k ∈ {1, . . . , 5}) AND AS DISTURBANCES (k = {IN,R}).

State Description Units

S
(k)
I Soluble inert organic matter g COD m−3

S
(k)
S Readily biodegradable substrate g COD m−3

X
(k)
I Particulate inert organic matter g COD m−3

X
(k)
S Slowly biodegradable substrate g COD m−3

X
(k)
BH Active heterotrophic biomass g COD m−3

X
(k)
BA Active autotrophic biomass g COD m−3

X
(k)
P Particulate products from biomass decay g COD m−3

S
(k)
O Dissolved oxygen g O2 m−3

S
(k)
NO Nitrate and nitrite nitrogen g N m−3

S
(k)
NH NH+

4 + NH3 nitrogen g N m−3

S
(k)
ND Soluble biodegradable organic nitrogen g N m−3

X
(k)
ND Particulate biodegradable organic nitrogen g N m−3

S
(k)
ALK Alkalinity mol HCO−3 m−3

From a system analytical perspective, the dynamics of each
reactor in the activated sludge plant, if studied individually, are
represented in terms of 13 state variables, the concentrations

x(k) =
[
S
(k)
I S

(k)
S X

(k)
I X

(k)
S X

(k)
BH X

(k)
BA X

(k)
P

S
(k)
O S

(k)
NO S

(k)
NH S

(k)
ND X

(k)
ND S

(k)
ALK

]
,

and one controllable input, the oxygen transfer coefficient
u(k) = KLa

(k). Moreover, the activated sludge plant is
subjected to two additional controllable inputs, the internal
and external sludge recycle flow-rates (QA and QR, respec-
tively), and to 27 uncontrollable inputs or disturbances, the
influent flow-rate QIN and concentrations x(IN), as well
as the concentrations in the externally recirculated sludge,
x(R), all directly implemented in the first reactor. We refer to
Table I for a description of the concentration variables. The
resulting state-space model of the activated sludge plant is

ẋ(t) = f(x(t), u(t), w(t)|θx), (1)

with state variables x(t) ∈ RNx

≥0 = [x(1) · · · x(5)]T , control-
lable inputs u(t) ∈ RNu

≥0 = [QA QR KLa
(1) · · · KLa

(5)]T ,
uncontrollable inputs w(t) ∈ RNw

≥0 = [QIN x(IN) x(R)]T ,
and time-invariant dynamics f(·|θx) depending on set of
stoichiometric and kinetic parameters θx (see, [2]). For the

state variables, we have Nx = 13× 5 = 65, Nu = 2 + 5 = 7
controllable inputs and Nw = 1 + 13 + 13 = 27 disturbances.

The default control strategy proposed for the BSM1 consists
of two low-level controllers: i) nitrate and nitrite nitrogen
concentration in the second reactor, S(2)

NO, by manipulation of
the internal recycle QA; ii) dissolved oxygen concentration
in the fifth reactor, S(5)

O , by manipulation of the oxygen mass
transfer coefficient KLa. On a higher level, the performance
of the plant is assessed in terms of flow-weighted time-
averaged effluent concentrations of total suspended solids
(TSS), biochemical oxygen demand (BOD5), chemical
oxygen demand (COD), total nitrogen (NTOT ) and ammonia
(SNH). Conventionally, control performance is assessed in
terms of effluent quality by measuring and minimising the
levels of these compound effluent concentrations. As these
variables are defined as positive linear combinations of some
state variables, their minimisation is achievable by minimising
the component state variables. Our focus is on the full-state
controllability of this class of activated sludge plants, we thus
omit the measurement process y(t) = g(x(t), u(t), w(t)|θy).

III. PRELIMINARIES

For a dynamical system, the state-space representation

ẋ(t) = ft(x(t), u(t), w(t)|θx) (2a)
y(t) = gt(x(t), u(t), w(t)|θy) (2b)

describes how the state vector x(t) ∈ RNx evolves in
time, given its current value and a set of controllable and
uncontrollable but measurable input vectors u(t) ∈ RNu and
w(t) ∈ RNw - the state equation Eq. (2a) - and how the state
vector is emitted to form the measurement vector y(t) ∈ RNy

- the measurement equation Eq. (2b). The nonlinear, time-
varying and parametric vector functions ft(·|θx) and gt(·|θy)
define the dynamics and the measurement process of the
system, respectively. θx and θy are the model’s parameters.
In the following, we will limit ourselves to time-invariant
systems f(·) and g(·), with a fully measurable state vector
and without feedthrough of the inputs, y(t) = Ix(t). With no
loss of generality we will also assume an initial time t0 = 0.

How state components interact with each other is captured
by a Nx ×Nx matrix A, whereas a Nx ×Nu matrix B is
used to identify which state components are affected by the
controls and a Nx ×Nw matrix G can be used to identify
which state components are affected by the disturbances,

ẋ(t) = Ax(t) +Bu(t) +Gw(t). (3)

The structure of matrix A, B and G can be determined
using inference diagrams in such a way that element Ai,j
(respectively, Bi,j and Gi,j) is non-zero and potentially
unknown whenever component xi (ui and wi) appears in
the vector field fj(·); that is, whenever the (i, j)-th element
∂fj/∂xi (∂fj/∂ui and ∂fj/∂wi) in the Jacobian matrix(es)
is not identically null. A quantification of the strength of the
interactions can be obtained when the Jacobians are evaluated
at some specific point (x′, u′, w′); that is, for an associated
linearised systems in which A, B and G are assumed to be
known. Typically, a fixed-point is chosen for the linearisation.



A dynamical system is said to be controllable if it is
possible to steer its state vector from any initial value to any
final value, in finite time. This notion of controllability is,
in general, a prerequisite for control and, for known linear
time-invariant systems, sufficient and necessary controllability
conditions have been derived from the classical definition:

Definition 1 (Controllability, [12]). The pair (A,B) is said
to be controllable if, given any initial state x(0) and any
final state x(tf ), it is possible to design an input u(t) that
transfers x(0) to x(tf ) in finite time, i.e., for 0 < tf <∞.

However, when matrix A and B are known only structurally,
we have to resort to the alternative notion of structural con-
trollability and associated sufficient and necessary conditions.
In this section, we briefly overview the two approaches.

A. Classical controllability

Let Wc(t) =
∫ t
0
eAτBBT eA

T τdτ be the Nx×Nx control-
lability Gramian of a system (A,B), a sufficient and necessary
condition for controllability is that det(Wc(t0, t)) 6= 0 for
any t > t0. Though this criterion allows for a straight-
forward determination of the control from x(0) to x(tf )
of minimum quadratic effort or control-energy E(t) ≡∫ t
0
‖u(t)‖2dt, its computation is unpractical. Equivalently, let

C =
[
B AB A2B · · · ANx−1B

]
be the RNx×NxNu

system’s controllability matrix, a sufficient and necessary
condition for controllability is that rank(C) = Nx, thus C
must be full-rank [12]. This criterion is more direct and,
for low-dimensional systems, its evaluation only requires a
small number of matrix multiplications. However, when the
dimensionality of the state vector is large, the computation
of matrix C is troublesome because numerically ill-posed.

A scalable alternative is given by the Popov-Belevitch-
Hautus (PBH) controllability test, based on the Hautus lemma:

Lemma 1 (Hautus, [7]). Let σ(A) = {λi}Nx
i=1 be the

spectrum of A. The statement ‘the pair (A,B) is controllable’
is equivalent to the following statements:

• rank
([
λI −A B

])
= Nx, for all λ ∈ C;

• rank
([
λiI −A B

])
= Nx, for all λi ∈ σ(A) ⊂ C.

Thus, the pair (A,B) is controllable if and only if, for each
eigenvalue λi of A (that is, when rank(λiI − A) < Nx),
the columns of B have at least one component in the
direction νi ∈ RNx , νi being the eigenvector of A associated
to λi. Moreover, eigenvectors νi for which rank([λiI −
A B]) < Nx indicate directions in the state-space that are
uncontrollable through the controls determined by matrix B.

Controllability tests are characterised by their binary nature.
A quantification of controllability can be derived from
E(t) =

(
x(tf )− eAtfx(0)

)T
W−1c (tf )

(
x(tf )− eAtfx(0)

)
,

the control-energy associated with the control of minimum
effort u(t) = BT eA

T (tf−t)W−1c (tf )
(
x(tf )− eAtfx(0)

)
.

The eigenvectors {νi(λi)} associated with the eigenvalues
λi ∈ σ(Wc(tf )) correspond to directions in the state space

that are ever harder to control the smaller the eigenvalue. For
stable systems, the infinite-horizon controllability Gramian,

Wc(∞) =

∫ ∞
0

eAτBBT eA
T τdτ, (4)

always exists and it can be computed efficiently by solving
the Lyapunov equation AWc(∞) +Wc(∞)AT +BBT = 0.

Definition 2 (Energy-related controllability metrics, [8], [9]).
Let Wc(∞) be the solution of AWc(∞) + Wc(∞)AT +
BBT = 0. The control effort associated with the pair (A,B)
can be quantified according to the following scalar metrics:

I. trace (Wc(∞)): It is inversely related to the control
effort averaged over all directions in the state-space;

II. trace
(
W †c (∞)

)
: It is related to the control effort

averaged over all directions in the state-space.
III. log (det(Wc(∞))): It is related to the volume of a Nx-

dimensional hyper-ellipsoid whose points are reacheable
with one unit or less of control energy.

IV. λmin(Wc(∞)): It is inversely related to the control
energy along the least controllable eigen-direction.

The control effort associated to attempting to control the
full-state by only controlling one individual state variable xi
at a time is quantified by the average controllability centrality,

CAC(i) = trace (Wc,i(∞)) . (5)

This non-negative quantity is computed by assuming a single
control that actuates only on the i-th state variable: That is,
when B = ei, the unit vector of the standard basis of RNx .
The infinite-horizon controllability Gramians Wc,i(∞) ∈
RNx×Nx are computed independently for all i ∈ {1, . . . , Nx}
as solution to AWc,i(∞)+Wc,i(∞)AT +eie

T
i = 0 (see [9]).

B. Structural controllability
The dynamics of a linear time-invariant system (A,B)

can be studied by mapping the state equation onto a digraph
G = (V, E). The vertex set V = VA∪VB consists of the union
of vertex set VA = {x1, . . . , xNx

} of state components and of
vertex set VB = {u1, . . . , uNu} of controls, while the edge set
E = EA ∪ EB is the union of set EA = {(xj , xi) | Ai,j 6= 0}
of directed edges between state component vertices and
set EB = {(uk, xi) | Bi,k 6= 0} of directed edges between
control vertices and state components vertices. If the elements
of A and B are either zeros or unknown, then the system is
referred to as a structured dynamical system [13].

The pair (A,B) is said to be structurally controllable if the
nonzero elements of A and B can be set in such a way that
the system is controllable in the classical sense. Formally,

Definition 3 (Structural Controllability, [5]). The pair
(A,B) is said to be structurally controllable if and only if
there exists a controllable pair (Ā, B̄) of the same dimension
and structure of the pair (A,B) such that ‖Ā−A‖ < ε and
‖B̄ −B‖ < ε, for an arbitrary small ε > 0.

Two pairs (A,B) and (Ā, B̄) have the same structure if
they have the same dimensions and each element Ai,j 6= 0
(respectively, Bi,j 6= 0) whenever Āi,j 6= 0 (B̄i,j 6= 0).



Lemma 2 ([5]). Let G = (V, E) be the directed network
associated to the pair (A,B). (A,B) is said to be structurally
controllable if and only if the following conditions hold:

• (Accessibility) For every xi ∈ VA there exists at least
one directed path starting from any uk ∈ VB to xi.

• (Dilation-free) For every S ⊆ VA, |T (S)| ≥ |S|, where
T (S) = {xj ∈ V | xi ∈ S ∧ (xj , xi) ∈ E} denotes the
neighborhood set of S.

The first condition can be verified by identifying all state
component vertices that are accessible from each possible
origin vertex (a control): Any graph search algorithm can be
used for the task [14]. The second condition can be verified
by computing a maximum matchingM⊆ Γ of an equivalent
bipartite graph K = (V+

A ∪V
−
A ,Γ) and then checking that all

unmatched state vertices xj ∈ V −A are directly connected by
distinct control vertices [6]. The maximum matching problem
consists of identifying the (possibly not unique) subset of
edges without common vertices that has maximum cardinality.
The bipartite graph K = (V+

A ∪ V
−
A ,Γ) is defined by the

disjoint and independent vertex sets V+
A = {x+1 , · · · , x

+
Nx
}

and V−A = {x−1 , · · · , x
−
Nx
}, and by the undirected edge set

Γ = {(x+i , x
−
j ) | (xi, xj) ∈ E}. Distinct origins linked to the

unmatched vertices form a V−A−perfect matching. Guarantee
of the dilation-free condition follows from Hall theorem [15].

IV. RESULTS AND DISCUSSION

In this section, we present the results of the analysis of the
controllability of the class of activated sludge process plants
represented by model (1) - ẋ(t) = f(x(t), u(t), w(t)|θx) with
Nx = 65, Nu = 7 and Nw = 27 - defined in Section II. We
present the results about the structural controllability of the
associated structural system (A,B) and then we discuss the
results obtained for some common linearisation (ASS , BSS).

A. Structural controllability analysis

For the activated sludge plant ẋ(t) = f(x(t), u(t), w(t)|θx)
with Nx = 65, Nu = 7 and Nw = 27, the structural pair
(A,B) is obtained from the Jacobian matrices, in such a
way that A ∈ R65×65 = ∂f/∂x and B ∈ R65×7 = ∂f/∂u.
The digraph G = (V, E) for pair (A,B) is defined by vertex
set V = VA ∪ VB = {x1, · · · , x65} ∪ {u1, · · · , u7}, and
directed edge set E = EA ∪ EB = {(xj , xi) | Ai,j 6= 0} ∪
{(uk, xi) | Bi,k 6= 0}. The network is depicted in Fig. 2.

The topology of network G = (V, E) indicates that the pair
(A,B) is structurally controllable, Lemma 2. The accessibility
condition is satisfied because all state vertices are reachable
from any control vertices. Specifically, it is easy to see how
they all are reachable through one-edge paths starting from
control vertices QA or QR. The dilation-free condition is
satisfied through a perfect matching M of size |M| = Nx
formed by choosing every state vertex’s self-loop, thus leaving
no vertex unmatched. A perfect matching such asM ensures
the dilation-free condition and suggests that controls are only
needed to ensure accessibility. This implies that the full-state
could be controlled by manipulating a single control (for

example, QA or QR) and then relying on the individual self-
dynamics to reach the desirable state. Such control strategy is
formally correct but clearly unviable in a real-world situation.
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Fig. 2. Network G = (V, E) (left panel) associated to the structural pair
(A,B) (middle and right panels). State vertices xi ∈ VA are in black,
control vertices uk ∈ VB are in blue. State-state edges (xi, xj) ∈ EA and
control-state edges (uk, xj) ∈ EB are coloured to match the corresponding
entries in A and B. To avoid clutter, all state self-loops have been omitted.

Fig. 2 shows the existence of five subsets Sl ⊆ VA of
state-vertices in which each pair of vertices xi, xj ∈ Sl
is linked by a directed path along edges in EA. Subsets of
vertices with such a property are known as strongly connected
components (SCC). Importantly, the existence of a control
vertex that actuates on any state vertex of each SCC is
sufficient to ensure that all state component vertices are
accessible. For the activated sludge plant, vertices associated
with state components S(1 5)

I , X(1 5)
I , X(1 5)

P and S(1 5)
ALK

in all reactors are associated to individual SCCs. The existence
of such clusters of vertices reflects the fact that such variables
are treated in model as non-reacting matter. Moreover, it is
worth mentioning that the SCCs associated with S

(k)
I and

X
(k)
I are disconnected from the other state components: These

groups of states are characterised by decoupled dynamics.
Summarising, the plant ẋ(t) = f(x(t), u(t), w(t)|θx)

is structurally controllable and thus it is also full-state
controllable in a classical sense, for almost all possible
realisations of A and B. Hence, it is possible to design
a control u(t) that is capable of transferring the plant to a
desired state, in finite time, for almost any possible realisation
(A,B). We conclude that the activated sludge plant is almost
surely controllable for all possible linearisations of the model
(that is, in the neighbourhood of all feasible operating points).

1) Linearisation around a commonly used operating-point:
We consider the linearisation (ASS , BSS) around the fixed
operating point SS ≡ (xSS , uSS , wSS) considered in [2]. To
verify whether the previous result holds for this realisation
commonly used in the literature, the pair (ASS , BSS) is
obtained from the Jacobian matrices instantiated at the
equilibrium point (that is, ASS = ∂f/∂x|SS and BSS =
∂f/∂u|SS). The, now weighted, digraph GSS = (VSS , ESS)
is constructed accordingly with VSS = VASS ∪ VBSS =
{x1, · · · , x65} ∪ {u1, · · · , u7}, and directed edge set ESS =
EASS∪EBSS = {(xj , xi) | ASSi,j 6= 0}∪{(uk, xi) | BSSi,k 6= 0}.

Fig. 3 shows how the pair (ASS , BSS) is not full-state
controllable in a structural sense. As the SCC comprising
state components S(1 5)

I cannot be reached from any of the



control vertices, the accessibility condition is not satisfied.

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

● ●
●

● ●●

●

●

● ●

●
●

●

●

●

●

●

Fig. 3. Network GSS = (VSS , ESS) (left) associated to pair (ASS , BSS)
(middle and right). State vertices xi ∈ VASS and state-state edges
(xi, xj) ∈ EASS are in black, control vertices uk ∈ VBSS and control-
state edges (uk, xi) ∈ EBSS are in blue. The groups of 5 vertices extruded
from the network correspond to state components X(1 5)

I and S(1 5)
I .

The emergence of inaccessible states is not specific to this
linearisation. In particular, as {S(k)

I }5k=1 represent soluble
inert organic matter, their dynamics are modelled in (1) as
{f13k+1 = Ṡ

(k)
I = Q(k)(S

(k−1)
I − S(k)

I )}5k=1, with Q(k) the
flow-rate into the k-th reactor. Since we assume constant
liquid volumes in the reactors, {Q(k) = QA +QR +QIN =

u1 + u2 + w1}5k=1, steady-state {Ṡ(k)
I = 0}5k=1 can be

achieved only when S(k)
I is the same in all reactors. Since

∂f13k+1

∂u1

∣∣∣
SS

=
∂f13k+1

∂u2

∣∣∣
SS

= (S
(k−1)
I − S(k)

I ) = 0 (∀k),

for any linearisation around a steady-state, vertices {S(k)
I }5k=1

will always be unaccessible from the control vertices.
A structurally controllable reduced-order system that does

not include {S(k)
I }5k=1 can be obtained by excluding the

appropriate rows and columns in (ASS , BSS). In this case,
while some vertices in the SCCs containing X

(k)
I would

disconnect from control origins, the SCC themselves would
still be connected, thus guaranteeing accessibility to all state
vertices. Moreover, given that the linearisation preserves every
state vertex’s self-loop, the dilation-free condition would still
be satisfied by the perfect matching of choosing these edges.

B. Classical controllability analysis

As pair (ASS , BSS) corresponds to the linear time-
invariant approximation of (1) in the neighbourhood of steady-
state point SS, it is possible to analyse stability of ASS and
full-state controllability of such pair in the classical sense.

The spectrum σ(ASS) consists of 34 distinct eigen-
values {λi(ASS)}, with {λ1, λ∗1, · · · , λ16, λ∗16} ⊂ C and
{λ17, · · · , λ34} ⊂ R. All eigenvalues are distinct, except
for two complex conjugate pairs and one real value, each
with algebraic multiplicity equal four. As Re(λi) < 0 for all
λi ∈ σ(ASS), then ASS is a stable matrix and its spectrum
thus characterises the plant as asymptotically stable.

We have shown that (ASS , BSS) is not a full-state
controllable pair in a structural sense. This important result
can be verified only using the PBH controllability test in
Lemma (1), as an accurate computation of the controllability
matrix is unfeasible. As expected, the PBH test confirms that

the pair is not controllable, as the two complex conjugated
pairs and one real eigenvalue, each with multiplicity equal
four, lead to rank-deficient matrices [λiI −ASS BSS ]. The
twelve associated eigenvectors show the state-space directions
that cannot be reached by using BSS , Fig. 4. Specifically,
three eigen-directions are defined only by inaccessible states
S
(k)
I , and nine directions associate with states S(k)

I , X(k)
I ,

X
(k)
P and S(k)

ALK . Interestingly, these state variables associate
with individual SCC in the networks previously discussed.

S
(1 5)
I S

(1 5)
S X

(1 5)
I X

(1 5)
S X

(1 5)
BH X

(1 5)
BA X

(1 5)
P S

(1 5)
O S

(1 5)
NO S

(1 5)
NH S

(1 5)
ND X

(1 5)
ND S

(1 5)
ALK

ν11

ν9

ν7

ν5

ν3

ν1

0

Fig. 4. Pair (ASS , BSS): Eigenvectors νi associated with eigenvalues λi ∈
σ(ASS) that do not satisfy the PBH test (rank([λiI−ASS BSS ]) < 65).

Conversely to what was obtained in structural terms,
removing from (ASS , BSS) the entries associated with
state components {S(k)

I }5k=1 does not lead to a controllable
reduced-order system. In fact, being {S(k)

I } characterised
by decoupled dynamics, their exclusion only removes three
uncontrollable eigen-directions. The apparent contradiction
between structural and classical controllability can be ex-
plained from the dilation-free condition. The existence of
a self-loop for each state vertex is sufficient to satisfy this
condition, thus making that control vertices needed only to
satisfy the accessibility condition. Whenever some of the
self-loop weights are equal, the maximum matching will
underestimate the number of controls needed for full-state
controllability [16]. This is the case with (ASS , BSS), where
X

(k)
I , X(k)

P , and S(k)
ALK always have identical self-dynamics.

We further analysed the controllability of the reduced-
order systems that do not include X(k)

I (respectively, X(k)
P or

S
(k)
ALK) with k ∈ {1, · · · 5}), together with the exclusion of
S
(k)
I . Because representing non-reactive matter, the exclusion

of these variables does not affect the other state variables.
Each of the resulting systems has order 55 and is full-state
controllable, according to the PBH controllability test.
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Fig. 5. Network G̃SS = (ṼSS , ẼSS) (left) associated to pair (ÃSS , B̃SS)
(middle and right). The size of state vertices is proportional to CAC(i).

One such reduced-order system ÃSS ∈ R55×55 and
B̃SS ∈ R55×7 can be obtained by removing from (ASS , BSS)

the entries relative to state components {S(k)
I }5k=1 and



{X(k)
I }5k=1. Removing these variables does not affect the

dynamics of the remaining state components, since the SCCs
are disconnected. The reduced-order system, Fig. 5, has a
spectrum with 34 distinct eigenvalues λi ∈ σ(ÃSS) and
two complex conjugate pairs and one real eigenvalue of
multiplicity equal two. The system is stable (as we have
that Re(λi(Ã

SS)) is always negative) and it is also full-state
controllable in both the structural and classical sense.

We analysed the compound control effort in terms of the
energy-related metrics, Definition 2, based on the infinite-
horizon controllability Gramian Wc(∞) of (ÃSS , B̃SS), Eq.
(4). The metrics, Table II, reveal how attempting to control
even this reduced-order model is an energy demanding task.
The fact that λmin(Wc(∞)) is virtually zero implies that there
exists at least one state-space direction that is practically
uncontrollable. Moreover, a very small eigenvalue causes
Wc(∞) to have a large condition number and its determinant
to be practically equal to zero (log(det(Wc(∞))) = −∞).

TABLE II
PAIR (ÃSS , B̃SS): ENERGY-RELATED CONTROLLABILITY METRICS.

tr(Wc(∞)) tr(W †c (∞)) log(det(Wc(∞))) λmin(Wc(∞))

0.8269 1.54E13 −∞ −1.16E−17

We conclude that the pair (ÃSS , B̃SS), although controllable,
it requires a very large control-effort to be able to access the
full state-space (Wc(∞) is close to singular). The cumulative
coverage of state-space is shown in Fig. 6 (left) in terms of nor-
malised cumulative sum (Λ(N) =

∑N
n=1 λn/

∑Nx

nx=1 λnx
)

of the eigenvalues of Wc(∞), along with its eigenvectors.

0

Fig. 6. Pair (ÃSS , B̃SS): Cumulative sum Λ(N) of eigenvalues of the
infinite-horizon controllability Gramian Wc(∞) and its eigenvectors (νn) .

The average energy that the system (ÃSS , B̃SS) would
require if we were to control it by directly actuating only on
one state variable at a time was quantified by the average
controllability centrality CAC(i), Eq. (5), and the results
depicted in Fig. 5. The analysis shows that the energy required
to control the system is among the lowest if we were to actuate
on some control that only affects biomass concentrations
(X(k)

BH or X(k)
BA). This reflects the fact that such variables are

central to the process, but will evolve slowly if not controlled.
Conversely, the energy required by the system would be the
highest if we were to actuate on some control that only affects
dissolved oxygen (S(k)

O ). However, it is worth mentioning that
it is still possible to control S(k)

O (through KLa
(k)), while

controlling X(k)
BH or X(k)

BA is practically unfeasible.
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Fig. 7. Pair (ASS , BSS): Control effort CAC(i) associated to the state
variables (x-axis) that contribute to define the controlled variables (y-axis).

We conclude with a discussion on how these control-efforts
can be related to the measurement variables that are routinely
controlled in the activated sludge plant. As the performance
of the plant is quantified in terms of effluent concentrations,
in Fig. 7 we show the control effort CAC(i) associated to the
state variables that contribute to define TSS, BOD5, COD,
NTOT , and SNH in the effluent. To show the contribution
from S

(5)
I and X(5)

I , the reported control centralities are based
on the pair (ASS , BSS), being the results for the remaining
state variables identical to what obtained for (ÃSS , B̃SS). As
all these measurement and thus controllable variables depend
on state variables that relate to biomass (X(5)

BH , X(5)
BA) and

X
(5)
P , with the exception of SNH , we conclude by pointing

out that they also associate with high individual control efforts.
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